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Preface

The IAS/Park City Mathematics Institute (PCMI) was founded in 1991 as part
of the “Regional Geometry Institute” initiative of the National Science Foundation.
In mid 1993 the program found an institutional home at the Institute for Advanced
Study (IAS) in Princeton, New Jersey.

The IAS/Park City Mathematics Institute encourages both research and ed-
ucation in mathematics and fosters interaction between the two. The three-week
summer institute offers programs for researchers and postdoctoral scholars, gradu-
ate students, undergraduate students, high school teachers, undergraduate faculty,
and researchers in mathematics education. One of PCMI’s main goals is to make
all of the participants aware of the total spectrum of activities that occur in math-
ematics education and research. We wish to involve professional mathematicians
in education and to bring modern concepts in mathematics to the attention of
educators. To that end, the summer institute features general sessions designed
to encourage interaction among the various groups. In-year activities at the sites
around the country form an integral part of the High School Teachers Program.

Each summer a different topic is chosen as the focus of the Research Program
and Graduate Summer School. Activities in the Undergraduate Summer School
deal with this topic as well. Lecture notes from the Graduate Summer School are
being published each year in this series. The first twenty one volumes are:

e Volume 1: Geometry and Quantum Field Theory (1991)

Volume 2: Nonlinear Partial Differential Equations in Differential Geom-
etry (1992)

Volume 3: Complex Algebraic Geometry (1993)

Volume 4: Gauge Theory and the Topology of Four-Manifolds (1994)
Volume 5: Hyperbolic Equations and Frequency Interactions (1995)
Volume 6: Probability Theory and Applications (1996)

Volume 7: Symplectic Geometry and Topology (1997)

Volume 8: Representation Theory of Lie Groups (1998)

Volume 9: Arithmetic Algebraic Geometry (1999)

Volume 10: Computational Complexity Theory (2000)

Volume 11: Quantum Field Theory, Supersymmetry, and Enumerative
Geometry (2001)

Volume 12: Automorphic Forms and their Applications (2002)

Volume 13: Geometric Combinatorics (2004)

Volume 14: Mathematical Biology (2005)

Volume 15: Low Dimensional Topology (2006)

Volume 16: Statistical Mechanics (2007)

xiii
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e Volume 17: Analytic and Algebraic Geometry: Common Problems, Dif-
ferent Methods (2008)

Volume 18: Arithmetic of L-functions (2009)

Volume 19: Mathematics in Image Processing (2010)

Volume 20: Moduli Spaces of Riemann Surfaces (2011)

Volume 21: Geometric Group Theory (2012)

Volumes are in preparation for subsequent years.

Some material from the Undergraduate Summer School is published as part of
the Student Mathematical Library series of the American Mathematical Society.
We hope to publish material from other parts of the IAS/PCMI in the future.
This will include material from the High School Teachers Program and publications
documenting the interactive activities that are a primary focus of the PCMI. At the
summer institute late afternoons are devoted to seminars of common interest to all
participants. Many deal with current issues in education: others treat mathematical
topics at a level which encourages broad participation. The PCMI has also spawned
interactions between universities and high schools at a local level. We hope to share
these activities with a wider audience in future volumes.

John C. Polking
Series Editor
July 2014
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