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Preface

The basic structure playing the key role in this book is a real inner product space
(X,6), i.e. a real vector space X together with a mapping § : X x X — R, a
so-called inner product, satisfying rules (i), (ii), (iii), (iv) of section 1 of chapter
1. In order to avoid uninteresting cases from the point of view of geometry, we
will assume throughout the whole book that there exist elements a,b in X which
are linearly independent. But, on the other hand, we do not ask for the exis-
tence of a positive integer n such that every subset S of X containing exactly n
elements is linearly dependent. In other words, we do not assume that X is a finite-
dimensional vector space. So, when dealing in this book with different geometries
like euclidean, hyperbolic, elliptic, spherical, Lorentz—Minkowskian geometry or
Mobius (Lie) sphere geometry over a real inner product space (X, §), the reader
might think of X = R? or R?, of X finite-dimensional, or of X infinite-dimensional.
In fact, it plays no role, whatsoever, in our considerations whether the dimension
of X is finite or infinite: the theory as presented does not depend on the dimension
of X. In this sense we may say that our presentation in question is dimension-free.

The prerequisites for a fruitful reading of this book are essentially based
on the sophomore level, especially after mastering basic linear algebra and basic
geometry of R? and R3. Of course, hyperspheres are defined via the inner prod-
uct 4. At the same time we also define hyperplanes by this product, namely by
{z € X | §(a,z) = a}, or, as we prefer to write {z € X | ax = a}, with0 £ a € X
and « € R. This is a quite natural and simple definition and familiar to everybody
who learned geometry, say, of the plane or of R3. For us it means that we do not
need to speak about the existence of a basis of X (see, however, section 2.6 where
we describe an example of a quasi-hyperplane which is not a hyperplane) and,
furthermore, that we do not need to speak about (affine) hyperplanes as images
under translations of maximal subspaces # X of X (see R. Baer [1], p. 19), hence
avoiding transfinite methods, which could be considered as somewhat strange in
the context of geometries of Klein’s Erlangen programme. This programme was
published in 1872 by Felix Klein (1849-1925) under the title Vergleichende Be-
trachtungen iber neuere geometrische Forschungen, Programm zum Eintritt in die
philosophische Facultdt und den Senat der k. Friedrich-Alezander- Universitat zu
Erlangen (Verlag von Andreas Deichert, Erlangen), and it gave rise to an ingenious
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and fundamental principle that allows distinguishing between different geometries
(S, G) (see section 9 of chapter 1) on the basis of their groups G, their invariants
and invariant notions (section 9). In connection with Klein’s Erlangen programme
compare also Julian Lowell Coolidge, A History of Geometrical Methods, Claren-
don Press, Oxford, 1940, and, for instance, W. Benz [3], p. 38 f.

The papers [1] and [5] of E.M. Schréder must be considered as pioneer work
for a dimension-free presentation of geometry. In [1], for instance, E.M. Schréder
proved for arbitrary-dimensional X,dim X > 2, that a mapping f : X — X
satisfying f(0) = 0 and ||zy — x| = [|f (x1) — f (z2)|| for all z1,z2 € X with
|lz1 — z2]] = 1 or 2 must be orthogonal. The methods of this result turned out to
be important for certain other results of dimension-free geometry (see Theorem 4
of chapter 1 of the present book, see also W. Benz, H. Berens [1] or F. Radd, D.
Andreescu, D. Vilcan [1]).

The main result of chapter 1 is a common characterization of euclidean and
hyperbolic geometry over (X, ). With an implicit notion of a (separable) transla-
tion group T of X with axis e € X (see sections 7, 8 of chapter 1) the following
theorem is proved (Theorem 7). Let d be a function, not identically zero, from
X x X into the set R>o of all non-negative real numbers satisfying d(z,y) =
d (¢ (2), ¢ (y)) and, moreover, d(3e,0) = d (0, Be) = d (0, ae) + d (ae, Be) for all
z,y € X, all p € TUO(X) where O (X) is the group of orthogonal bijections of
X, and for all real «, 3 with 0 < a < 3. Then, up to isomorphism, there exist
exactly two geometries with distance function d in question, namely the euclidean
or the hyperbolic geometry over (X, d). We would like to stress the fact that this
result, the proof of which covers several pages, is also dimension-free, i.e. that it
characterizes classical euclidean and classical (non-euclidean) hyperbolic geometry
without restriction on the (finite or infinite) dimension of X, provided dim X > 2.
Hyperbolic geometry of the plane was discovered by J. Bolyai (1802-1860), C.F.
GauB (1777-1855), and N. Lobachevski (1793-1856) by denying the euclidean par-
allel axiom. In our Theorem 7 in question it is not a weakened axiom of parallelity,
but a weakened notion of translation with a fixed azis which leads inescapably to
euclidean or hyperbolic geometry and this for all dimensions of X with dim X > 2.
The methods of the proof of Theorem 7 depend heavily on the theory of functional
equations. However, all results which are needed with respect to functional equa-

tions are proved in the book. Concerning monographs on functional equations see
J. Aczél [1] and J. Aczél-J. Dhombres [1].

In chapter 2 the two metric spaces (X, eucl) (euclidean metric space) and
(X, hyp) (hyperbolic metric space) are introduced depending on the different dis-
tance functions eucl (x,y), hyp (z,y) (z,y € X) of euclidean, hyperbolic geometry,
respectively. The lines of these metric spaces are characterized in three different
ways, as lines of L.M. Blumenthal (section 2), as lines of Karl Menger (section 3), or
as follows (section 4): for given a # b of X collect as line through a,b all p € X such
that the system d (a,p) = d (a,z) and d (b,p) = d (b, z) of two equations has only
the solution & = p. Moreover, subspaces of the metric spaces in question are defined
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in chapter 2, as well as spherical subspaces, parallelism, orthogonality, angles, mea-
sures of angles and, furthermore, with respect to (X, hyp), equidistant surfaces,
ends, horocycles, and angles of parallelism. As far as isometries of (X, hyp) are
concerned, we would like to mention the following main result (Theorem 35, chap-
ter 2) which corresponds to Theorem 4 in chapter 1. Let p > 0 be a fixed real
number and N > 1 be a fixed integer. If f : X — X satisfies hyp (f (z), f (y)) <p
for all z,y € X with hyp (x,y) = o, and hyp (f (z), (y)) > Npforall z,y € X
with hyp (z,y) = Np, then f must be an isometry of (X, hyp), i.e. satisfies
hyp (f (z), f (y)) = hyp(z,y) for all z,y € X. If the dimension of X is finite, the
theorem of B. Farrahi [1] and A.V. Kuz'minyh [1] holds true: let ¢ > 0 be a fixed
real number and f : X — X a mapping satisfying hyp (f (z), f(y)) = o for all
z,y € X with hyp (z,y) = p. Then f must already be an isometry. In section 21
of chapter 2 an example shows that this cannot generally be carried over to the
infinite-dimensional case.

A geometry T = (5, G) is a set S # () together with a group G of bijections
of S with the usual multiplication (fg)(x) = f (g (:r)) for all z € S and f,g € G.
The geometer then studies invariants and invariant notions of (S, G) (see section
9 of chapter 1). If a geometry I' is based on an arbitrary real inner product space
X,dim X > 2, then it is useful, as we already realized before, to understand by
“T", dimension-free” a theory of I" which applies to every described X, no matter
whether finite- or infinite-dimensional, so, for instance, the same way to R? as
to C'[0,1] with fg = fol t2f (t) g (t)dt for real-valued functions f,g defined and
continuous in [0, 1] (see section 2, chapter 1). In chapter 3 we develop the geom-
etry of Mobius dimension-free, and also the sphere geometry of Sophus Lie. Even
Poincaré’s model of hyperbolic geometry can be established dimension-free (see
section 8 of chapter 3). In order to stress the fact that those and other theories are
developed dimension-free, we avoided drawings in the book: drawings, of course,
often present properly geometrical situations, but not, for instance, convincingly
the ball B (¢, 1) (see section 4 of chapter 2) of the above mentioned example with
X = C'[0,1] such that ¢ : [0, 1] — R is the function ¢ (§) = £3. The close connection
between Lorentz transformations (see section 17 of chapter 3) and Lie transfor-
mations (section 12), more precisely Laguerre transformations (section 13), has
been known for almost a hundred years: it was discovered by H. Bateman [1] and
H.E. Timerding [1], of course, in the classical context of four dimensions (section
17). This close connection can also be established dimension-free, as shown in
chapter 3. A fundamental theorem in Lorentz—Minkowski geometry (see section
17, chapter 3) of A.D. Alexandrov [1] must be mentioned here with respect to Lie
sphere geometry: if (2 <)dim X < oo, andif A\ : Z — Z, Z := X §R, is a bijection
such that the Lorentz—Minkowski distance I (x, y) (section 1 of chapter 4) is zero if,
and only if [ (f (), f (1/)) =0 for all z,y € Z, then f is a Lorentz transformation
up to a dilatation. In fact, much more than this follows from Theorem 65 (section
17, chapter 3) which is a theorem of Lie (Laguerre) geometry: we obtain from
Theorem 65 Alexandrov’s theorem in the dimension-free version and this even in
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the Cacciafesta form (Cacciafesta [1]) (see Theorem 2 of chapter 4).

All Lorentz transformations of Lorentz—Minkowski geometry over (X,4) are
determined dimension-free in chapter 4, section 1, by Lorentz boosts (section 14,
chapter 3), orthogonal mappings and translations. Also this result follows from a
theorem (Theorem 61 in section 14, chapter 3) on Lie transformations. In The-
orem 6 (section 2, chapter 4) we prove dimension-free a well-known theorem of
Alexandrov-Ovchinnikova-Zeeman which these authors have shown under the as-
sumption dim X < oo, and in which all causal automorphisms (section 2, chapter
4) of Lorentz-Minkowski geometry over (X, ) are determined.

In sections 9, 10, 11 (chapter 4) Einstein’s cylindrical world over (X,4) is
introduced and studied dimension-free; moreover, in sections 12, 13 we discuss de
Sitter’s world. Sections 14, 15, 16, 17, 18, 19 are devoted to elliptic and spheri-
cal geometry. They are studied dimension-free as well. In section 19 the classical
lines of spherical, elliptic geometry, respectively, are characterized via functional
equations. The notions of Lorentz boost and hyperbolic translation are closely
connected: this will be proved and discussed in section 20, again dimension-free.

It is a pleasant task for an author to thank those who have helped him. I am
deeply thankful to Alice Giinther who provided me with many valuable suggestions
on the preparation of this book. Furthermore, the manuscript was critically revised
by my colleague Jens Schwaiger from the university of Graz, Austria. He supplied
me with an extensive list of suggestions and corrections which led to substantial
improvements in my exposition. It is with pleasure that I express my gratitude to
him for all the time and energy he has spent on my work.

Waterloo, Ontario, Canada, June 2005 Walter Benz
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In this second edition a new chapter (§—Projective Mappings, Isomorphism The-
orems) was added. One of the fundamental results contained in this chapter 5 is
that the hyperbolic geometries over two (not necessarily finite-dimensional) real
inner product spaces (X, d), (V,¢) (see p. 1) are isomorphic (p. 16f) if, and only if,
the two underlying real inner product spaces are isomorphic (p. 1f) as well. Simi-
lar theorems are proved for Mobius sphere geometries and for the euclidean case.
Another result of chapter 5 we would like to mention is that the Cayley—Klein
model of hyperbolic geometry over (X, ), as developed dimension—free in section
2.12, can also be established dimension—free via a certain selection of projective
mappings of X depending, however, on the chosen inner product § of X.

It remains to the author to thank Professors Hans Havlicek, Zsolt Péles, Vic-
tor Pambuccian who, through their support, their criticism and their suggestions,
contributed to the improvement of this book. Special thanks in this connection
are due to Alice Giinther and my colleagues Ludwig Reich and Jens Schwaiger.

Last, but not least, I would like to express my gratitude to the Birkhduser
publishing company and, especially, to Dr. Thomas Hempfling for their conscien-
tious work and helpful cooperation.

Hamburg, July 2007 Walter Benz
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Chapter 1

Translation Groups

1.1 Real inner product spaces

A real inner product space (X, 0) is a real vector space X together with a mapping
0: X x X — R satisfying

(i) 0 (z,y) =6 (y,2),

(ii) 6 (x+y,2) =6(z,2)+ 6 (y, 2),
(i) 6 (A\z,y) =X -d(x,y),

(iv) 0 (z,2) >0 for x #0

for all z,y,z € X and A € R. Concerning the notation ¢ : X x X — R and others
we shall use later on, see the section Notation and symbols of this book. Instead
of § (x,y) we will write zy or, occasionally, = - y. The laws above are then the
following;:

zy =yz, (z+y)z=zz+yz, (A\x)-y=2A-(zy)

for all z,y,2 € X, A€ R, and 22 := z -z > 0 for all z € X\{0}. Instead of (X, d)
we mostly will speak of X, hence tacitly assuming that X is equipped with a fixed
inner product, i.e. with a fixed § : X x X — R satisfying rules (i), (ii), (iii), (iv).

Two real inner product spaces (X, d), (X’,d’) are called isomorphic provided
(in the sense of if, and only if) there exists a bijection

p: X - X'
such that

ez +y) =9 @) +0®), ¢() = e (z), 8 (z,y) =8 (¢ (2), ¢ (¥))
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hold true for all z,y € X and A € R. The last of these equations can be replaced
by the weaker one d (z,x) = ¢'(p (z), ¢ (z)) for all z € X, since

20 (z,y) =6 (x+y,x+y) —d(x,2) — 6 (y,9)

holds true for all z,y € X for § = ¢ as well as for all z,y € X’ for § = ¢’

1.2 [Examples

a) Let B # () be a set and define X (B) to be the set of all f: B — R such that
{be B| f(b) # 0} is finite. Put

(f+9)(b) := f(b) +g(b)
for f,g € X and b € B, and
(af)(b) := af (b)
for f € X, a € R, b € B. Finally set

fg:=>_ f(b)g(b)
beB

for f,g € X.

b) Let a < ( be real numbers and let X be the set of all continuous functions
f:]la.0] = R with [a, 8] ;= {t e R| a <t < 3}. Define f + g, af as in a) and
put

3
fg ::/ ht)f () g () dt

for a fixed h € X satisfying h (t) > 0 for all ¢t € [a, B]\T where T is a finite subset
of [a, 3]. This real inner product space will be denoted by X ([a, 3], k).

¢) Suppose that X is the set of all sequences
(al, az,as, .. )
of real numbers ay, as,as, ... such that Zil a% exists. Define

(al,ag,...) + (bl,bz,...)

(al + bl« az + b25 s § ')a

A (ar,az,...) = (Aaj,Aag,...),
(al,az,...)-(bl,bz,...) = Zaibi,
i=1

by observing

(ai +b;)? = a? + b7 + 2a;b; < a? + b2 + a? + b7
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from (a; — b;)? > 0, i.e. by noticing

ia,—}-b <2Za +22b
=1

i.e. that Y 72 (a; + b;)? exists. Because of

n

4Zab —Z(ame)2 Z( bi)?,

=1

o0 .
also Y .~ a;b; exists.
i=1

1.3 Isomorphic, non-isomorphic spaces
Let n be a positive integer. The R™ consists of all ordered n-tuples

(z1,22,...,%n)

of real numbers x;, i = 1,2,...,n. It is a real inner product space with
(@150 s®n) F (Yigenss W) = (@1 F Yis s oaln +Yn)
- (Z1,...,1n) = (Qy,...,0T,),
(@13 %) - (Y1, Yn) = TiY1+ -+ Toln
for z;,y;, 0 € R, i =1,...,n.

Obviously, R™ and X ({1, 2,... ,n}) are isomorphic: define ¢ (z1,...,z,) to
be the function f: {1,...,n} - R with f(i)=x;,i=1,...,n.

Suppose that B, B are non-empty sets. The real inner product spaces
X (B1), X (Bz) are isomorphic if, and only if, there exists a bijection v : B; — By
between B; and Bj. If there exists such a bijection, define ¢ (f) for f € X (By)
by
e (N (®) = £ (B)

for all b € By. Hence ¢ : X (B;) — X (B2) establishes an isomorphism. If
X (B1), X (Bg) are isomorphic, there exists a bijection

¢: X (B1) = X (Ba)

with ¢ (z +y) = ¢ (2) + ¢ (y), ¢ (Az) = Ap(z) for all 7,y € X (By) and A € ]R
We associate to b € By the element b of X (By) defined by b(b) = 1 and b( )=

for all ¢ € By\{b}. Then B; := {b | b € By} is a basis of X (B1), and B, cmd
7 (Bl) must be bases of X (B,). Since B, ¢ (Bl) are of the same cardinality, and
also Bg, ©® (Bl) we get the same cardinality for B , Bg, and hence also for By, Bs.
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Suppose that a < 3 are real numbers and that h : [a, 3] — R is continuous
with h(n) > 0 in [a,/3]. Then the real inner product spaces X ([a,8],h) and
X ([0,1],1) are isomorphic. Here 1 designates the function 1(§) = 1 for all £ €
(0,1]. In order to prove this statement, associate to the function f : [0,1] — R,
also written as f (€), the function ¢ (f) : [@, 3] — R defined by

_[Ga, (n-a
ot = [Po= 1 (22)).

Obviously, ¢ : X ([0,1],1) — X ([o, 8], h) is a bijection. It satisfies

e(ftg)=w(f) +v(9), p(Af) = rp(f)

for all A € R and f, g € X ([0,1],1). Moreover, we obtain

3 1
¢(f)-99(g)=/ h(n)ga(f)(n)ap(g)(mdn=/O F©)g(©)de=f-g.

and hence that X ([0,1],1), X ([e. 8], h) are isomorphic.

Remark. There exist examples of (necessarily infinite-dimensional) real vector
spaces X with mappings d, : X x X — R, v = 1,2, satisfying rules (i),(ii), (iii),
(iv) of section 1.1 such that (X,d;) and (X, d2) are not isomorphic (J. Ritz [1]).

1.4 Inequality of Cauchy—Schwarz

Inequality of Cauchy-Schwarz: If a,b are elements of X, then (ab)? < a?b? holds
true.

Proof. Case b= 0. Observe, for p € X,
pb=p-0=p-(04+0)=p-0+p-0,

ie.pb=p-0=0,ie. a-b=0and b*>=0.
Case b # 0. Hence b > 0 and thus

ab \? ab)?
OS(a—b—2b) =a2—(b2), (1.1)

i.e. (ab)? < a?b?. O

Lemma 1. If a,b are elements of X such that (ab)? = a?b? holds true, then a,b
are linearly dependent.
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Proof. Case b=0.Here0-a+1-b=0.
Case b # 0. Hence, by (1.1), (a - ﬁ—ﬁ’ . b)2 =0, i.e.

For x € X, the real number s > 0 with s? = 22 is said to be the norm of

z, s =: ||z||. Obviously, |Az| = |A| - ||z|| for A € R and = € X. Moreover, |z| =0
holds true for € X if, and only if, z = 0. Observing zy < |zy| < ||z||-||y|| for z,y €

X, from the inequality of Cauchy-Schwarz, we obtain (z + y)? < (||z| + ||y||)2,
i.e. we get the triangle inequality

[z +yll < ||zl + [lyll for all z,y € X. (1.2)

1.5 Orthogonal mappings

Let X be a real inner product space. In order to avoid that the underlying real
vector space of X is R or {0}, we will assume throughout the whole book that there
exist two elements in X which are linearly independent. Under this assumption the
following holds true: if x, y are elements of X, there exists w € X with w? =1 and
w - (x —y) = 0. Since there are elements a, b in X, which are linearly independent,
put w = “(LLH in the case x = y. If x # y, there exists z in X such that z ¢ R-(z—y),
because otherwise a,b € R - (x — y) would be linearly dependent. Hence

I P
U= ("L'—y)Q( "/)7é0

Thus w :=  satisfies w?=1and w-(x—y)=0.
A mapping w : X — X is called orthogonal if, and only if,
w(@+y) =w@) +w) wz) = (), 2y =w(@)w(y)
hold true for all z,y € X and X\ € R.
An orthogonal mapping w of X must be injective, but it need not be surjec-
tive. Assume w (x) = w (y) for the elements z,y of X. Because of

we-y)=w(@+[(-1y]) =w@)+(-Dw(y) =0,

2

we obtain (z —y)? = [w(z —y))*=0,ie. 2 —y=0,ie z=y.

Define B :={1,2,3,...} and take the space X = X (B) of type a). For f € X
put

w(f)A)=0and w(f)i)=f(i—1),i=2,3,....



