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Preface

The present volume contains some applications of noncommutative and nonas-
sociative algebras to constructing unusual (nonclassical and singular) solutions to
fully nonlinear elliptic partial differential equations of second order. Here the so-
lutions are to be understood in a weak (viscosity) sense. Using such algebras to
construct exotic or specific analytic and geometric structures is not new. One can
mention here, for instance, the constructions of exotic spheres by Milnor [163], of
singular solutions to the minimal surface system by Lawson and Osserman [144],
the ADHM and constuction of instantons by Atiyah, Drinfel’d, Hitchin, and Manin
[17], and the construction of singular coassociative manifolds by Harvey and Law-
son [103], all four using quaternions, as well as the recent constructions of unusual
solutions of the Ginzburg-Landau system by Farina and Ge-Xie [86], [93], using
isoparametric polynomials and thus, implicitly, Jordan or Clifford algebras.

However, our applications of quaternions, octonions, and Jordan algebras to
elliptic partial differential equations of second order are new; they allow us to solve
a longstanding problem of the existence of truly weak viscosity solutions, which are
not smooth (= classical) ones. Moreover, in some sense, they give (albeit along with
some other arguments) an almost complete description of homogeneous solutions
to fully nonlinear elliptic equations. In fact, a major part of the book is devoted
to the simplest class of fully nonlinear uniformly elliptic equations, namely those
of the form

(0.1) F(D?u) =0,

F being a nonlinear sufficiently smooth functional on symmetric matrices and D?u
being the Hessian of a putative solution u. Those are “constant coefficient” fully
nonlinear elliptic equations. Moreover, often we impose a rather drastic condition
that F' depends only on the eigenvalues of the Hessian (so-called “Hessian equa-
tions”). In that case F is a function of only n values of symmetric functions of D?u
rather than of n(n + 1)/2 partial derivatives, n being the dimension of the ambi-
ent space. Our methods show that even in that very restricted setting in five and
more dimensions (some of) those equations admit homogeneous d-order solutions
with any & €]1,2], that is, of all orders compatible with known regularity results
by Caffarelli and Trudinger [37], [255] for viscosity solutions of fully nonlinear uni-
formly elliptic equations, proving the optimality of these regularity results. To the
contrary, the situation in four and fewer dimensions is completely different. First
of all, in two dimensions the classical result by L. Nirenberg [186] guarantees the
regularity of all viscosity solutions, homogeneous or not. In Section 1.6 we prove
that in four (and thus three) dimensions there are no homogeneous order 2 solu-
tions to fully nonlinear uniformly elliptic equations, at least in the analytic setting,
which suggests strongly that there are no nonclassical homogeneous solutions at

v



vi PREFACE

all in four and three dimensions. If so, we get a complete list of dimensions where
nonclassical homogeneous solutions to fully nonlinear uniformly elliptic equations
do exist. One can compare this with the situation of, say, ten years ago, when the
very existence of nonclassical viscosity solutions was not known.

We should repeat once more that this result of fundamental importance for
the theory of partial differential equations is obtained by applications of relatively
elementary algebraic (and differential geometric) means, thus stressing once more
that studying relations between apparently disconnected mathematical areas can
often be very fruitful.

Furthermore, there are some cases where (singular) solutions of some classes
of nonlinear elliptic equations and some nonassociative algebras are interrelated
even more strongly, leading in certain circumstances to the equivalence of those
objects. A study of these relations and their applications to classifying both classes
of objects is the second theme of the book, intimately related to the previous one.

Our exposition is as follows. Since we hope that our work can be of use to a
rather diversified mathematical audience, we devote the first three chapters to the
basics of nonlinear elliptic equations and of noncommutative and nonassociative
algebraic structures used in our constructions.

In Chapter 1 we recall basic facts about nonlinear elliptic equations and their
viscosity solutions. The material in the first five sections is quite traditional in many
papers devoted to viscosity solutions. However, in Section 1.2 we also formulate two
recent results on partial regularity of solutions, in Section 1.3 we expose a recent
result concerning the difference of viscosity solutions, and in Section 1.4 we give a
recent result on the regularity of solutions to axially symmetric Dirichlet problems
for Hessian equations. Section 1.6 is devoted to recent results and conjectures for
homogeneous solutions to fully nonlinear uniformly elliptic equations. Section 1.7
gives some Liouville type results and various results on removable singularities for
solutions of fully nonlinear elliptic equations, including a recent result describing
viscosity solutions of a uniformly elliptic Hessian equation in a punctured ball.

Chapter 2 is devoted to the construction and elementary properties of the real
division algebras H, O, Clifford algebras, spinor groups, and some exceptional Lee
groups, especially G. We also discuss cross products in the algebra O and the
resulting calibrations (in their algebraic form).

In Chapter 3 we give an overview of Jordan algebras in their relation to special
cubics and some partial differential equations (of first order). Most of its material
is classical, but some new facts concerning relations between cubic Jordan algebras
and the so-called eiconal differential equation, |V f(x)|?> = c|z|*, are proven.

In Chapters 4 and 5 we give our main constructions of nonclassical and singu-
lar solutions to fully nonlinear, uniformly elliptic equations, often of Hessian or of
Isaacs type. In fact, all our nonclassical solutions are of the form P(x)/|z|* with a
homogeneous polynomial P(x),x € R™, of degree 3, 4, or 6 and a suitable a. Chap-
ter 4 contains the constructions based on trialities, which use real division algebras:
quaternions and octonions; there n = 12 or 24, deg P = 3, o € [1,2[. Chapter 5
gives constructions based on isoparametric polynomials P(z), © € R™, n > 5, of
degrees 3, 4, or 6 coming from Jordan and Clifford algebras. The constructions of
Chapter 4 are more elementary in that they use less of algebraic theory but need
more calculations than those of Chapter 5. The arguments in these chapters are
based on several closely related criteria for solutions of fully nonlinear uniformly
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elliptic equations in terms of appropriate combinations of the spectrum for their
Hessians. Those conditions are extremely restrictive and one needs rather elabo-
rated arguments and/or calculations to verify them, which is obtained partially by
using MAPLE calculations. One notes, however, that the calculations in Chapters 4
and 5 (and in Chapter 7) which use MAPLE extensively are completely rigorous
since there MAPLE is used to verify algebraic identities, albeit rather cumbersome
ones.

Chapter 6 is devoted to a classification of cubic minimal cones, that is, the sim-
plest nontrivial solutions to the minimal surface system which is (almost) complete
under a natural additional condition (the case of radial eigencubics). The main
method there is to construct a certain nonassociative algebra from a given minimal
cubic cone in such a way that the differential-analytical structure of the cones be-
comes transparent from the algebraic side, and vice versa. The main tool for this is
the so-called Freudenthal multiplication. It associates to any fixed cubic form u on
a vector space V carrying a symmetric nondegenerate bilinear form @ the multipli-
cation (x,y) — xy by setting 9,0yul. = Q(zy; z). The algebra V(u) defined in this
way is called the Freudenthal-Springer algebra of the cubic form u. In the basic
case of a radial eigencubic the corresponding Freudenthal-Springer algebra leads to
a so-called radial eigencubic algebra, or just a REC algebra. Thus, the classification
of radial eigencubics becomes equivalent to that of REC algebras. There exist two
principal classes of REC algebras, namely those coming from Clifford and Jordan
structures, respectively. Applying standard methods of nonassociative algebra such
as Pierce decomposition and a thorough study of certain defining relations in REC
algebras, one eventually gets their complete classification. Note, however, that the
algebraic techniques of this chapter are elaborated more than in the other chapters
and assume more advanced knowledge of the nonassociative algebraic systems.

In Chapter 7 we treat elliptic equations arising in calibrated geometry [103],
namely, the special Lagrangian, associative, coassociative, and Cayley equations;
they are not uniformly, but only strictly, elliptic, and we recall briefly their construc-
tions in Section 7.1. One notes, however, that the construction of singular coas-
sociative 4-folds given by Harvey and Lawson in [103] and recalled in Section 7.2
resembles strongly the constructions in Chapter 4. It would be very interesting to
understand a possible common ground of constructions in Chapters 4 and 7 (and,
presumably, in Chapters 5 and 6) and eventually find some other situations where
it works. Sections 7.3 and 7.4 are devoted to constructions of some singular so-
lutions to the special Lagrangian equations (SLE) in the nonconvex case, in three
dimensions. Note that in the convex (or concave) case those solutions are smooth
in any dimension by [48] and that in two dimensions these equations cannot be
nonconvex. These constructions also lead to examples of a failure of the maximum
principle for the Hessian of solutions to a uniformly elliptic equation in three and
more dimensions as well as to examples of solutions to the minimal surface system
with a notably low regularity:.

Acknowledgements. We would like to thank Luis Caffarelli, Charles Smart,
and Yu Yuan for their interest in and very fruitful discussions of the subject of
this book. We also thank the anonymous reviewers for their pertinent remarks
allowing us to improve the exposition. We would also like to thank A. Riiland for
her thorough reading of the manuscript, leading to many improvements of the text.
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CHAPTER 1

Nonlinear Elliptic Equations

In this chapter we give a brief introduction to the theory of second-order elliptic
equations, principally fully nonlinear ones. After defining them in Section 1.1 and
giving some basic examples, we formulate the principal problems concerning the so-
lutions of such equations, namely, their existence, uniqueness, and regularity. The
main properties of the viscosity (weak) solutions giving a partial answer to these
problems are discussed in Section 1.2. In addition to the now classical foundational
results, we formulate there two recent results on partial regularity of solutions,
namely Theorems 1.2.5 and 1.2.6. In Section 1.3 we consider linear elliptic oper-
ators of nondivergence form; in addition to classical results, we expose a recent
result concerning the difference of viscosity solutions, Theorem 1.3.6. Section 1.4
is devoted to nonlinear equations with smooth solutions, i.e., those with a convex
functional F'; we describe the Evans-Krylov theory, which guarantees that under
the convexity assumption the viscosity solutions are classical, i.e., really verify the
equation. Note that one of our principal aims in this book is to show that without
the convexity assumption this regularity does not hold. We also give a recent result,
Theorem 1.4.4, which guarantees the same property for axially symmetric Dirich-
let problems for Hessian equations. Section 1.5 is devoted to degenerate elliptic
equations; first we expose a geometric approach to degenerate elliptic equations
proposed recently by Harvey and Lawson [104] and then discuss various regular-
ity results for them. In Section 1.6 we formulate some results and conjectures for
homogeneous solutions to fully nonlinear uniformly elliptic equations. Finally, in
Section 1.7 we give some Liouville type theorems and also various results on re-
movable singularities for solutions of fully nonlinear elliptic equations, including a
recent result, Theorem 1.7.6, describing viscosity solutions of a uniformly elliptic
Hessian equation in a punctured ball.

The literature devoted to the topic is overwhelming; the basic references con-
cerning Sections 1.1-1.4 are [94], [42], [71], [133], [134]; see also [47], [46], [48],
(83], [137], [37]. [253], [254], [255], [36].

1.1. Elliptic equations

1.1.1. Definition and examples. Throughout this book we consider second-
order partial differential equations of the form

(1.1.1) F(D?*u, Du,u,x) = 0.

Here D?u denotes the Hessian of the function u : Q@ — R, Du being its gradient,
x € Q C R” for a domain (= open connected set) €2. The functional is of the form

F=FX,rpz): AxR"xRxQ —R

1



2 1. NONLINEAR ELLIPTIC EQUATIONS

where A is a domain in Sym,, (R), the space of symmetric real n x n-matrices over
R. The degenerate ellipticity condition is given by
(1.1.2) F(X,r,p,x) < F(Y,r,p,z) if X <Y,
i.e., the matrix Y — X is nonnegatively defined; we also suppose that F is continuous.
Often we will demand more on the functional F.

If F is a C'-function in X, (1.1.2) yields the inequality

Fx >0,

i.e., the matrix of the first derivatives of F with respect to the X variables is
nonnegative. If in addition A = Sym,, (R), the last two inequalities are equivalent.

Let us give several well-known examples of elliptic equations which describe
important natural processes, geometrical problems, and the like.

ExXAMPLE 1.1.1 (Laplace’s equation).
Au — c(z)u = f(x).

The corresponding F' is given by F(X;p;7r;2) = tr(X) —c(x)r+ f(x). As particular
cases we get the classical Laplace equation Au = () defining harmonic functions and
the Poisson equation Au = f(x).

ExAaMPLE 1.1.2 (Degenerate elliptic linear equations). Degenerate elliptic lin-
ear equations are of the form

Zal_] D01 B.IJ Z bi(:zr)% — e(z)ulz) = f(z),

where the matrix A(x) = a;;(x) is symmetric; the corresponding F is
F(X;p;ryz) = tr(A(2)X) — Zb (z)pi — c(x)r — f(x).

In this case, F' is degenerate elliptic if and only if A(x) > 0. If a constant C' > 0
exists such that CI > A(x) > C~ ! for all x € Q2 where [ is the identity matrix, F
is said to be uniformly elliptic. If C(x)I > A(z) > C(x)~'I for C(x) > 0 and any
x € Q, F is called strictly elliptic.

EXAMPLE 1.1.3 (Quasilinear elliptic equations in divergence form). An equa-
tion
P
1.1.3 —(a;(Du,z)) — b(Du,u,x) =0
(1.1.3) 3" 5o (@:(Du,2)) — b )
is elliptic if the vector field a(p,z) is monotone in p regarded as a mapping from

R™ to itself. If the coeflicients are differentiable, one can rewrite (1.1.3) as (1.1.1)
with 5
F(X,p,r,x)=tr((Dpa(p, z))X) — b(p,r,z) + Z azai’
EXAMPLE 1.1.4 (p-Laplace equation). Let p > 1. The equation
(1.1.4) Ayu = div(|Vu|P~2Vu) = 0
is an important example of a quasilinear elliptic equation in divergence form; one
easily calculates that

. ou Ou O%*u
Ayu = |VulP £ |Vu.|2Au +(p—2) ETS T
— Ow; dr;j 0,0,
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Vu
—Aju = —div (IV |)

where H is the mean curvature operator. For p = 2 one returns to the Laplacian:
Asu = Au.

When p = n is the dimension of the ambient space, the operator A, becomes
conformally invariant.

For p =1 one gets

For p = oo one gets the limit oco-Laplacian,
ou du
Bt = Z da; Da; 87) &v]

ExAMPLE 1.1.5 (Quasilinear elliptic equations in nondivergence form). The
equation

a;i(p,x) — b(Du,u,z) =0,

Z ” 61:1(91‘]

where A(p, z) = a;;(p,x) € Sym,, (R), corresponds to
F(X,r,p,x)=tr(A(p,z)X) — b(p,r,x).

EXAMPLE 1.1.6 (Pucci’s equations). These are uniformly elliptic equations im-
portant in many applications, especially in the theory of viscosity solutions for fully
nonlinear elliptic equations. They are of the form

M~ (D*u) = f(z), M*(D*u)= f(x)
where M~ and M™ are Pucci’s extremal operators defined as follows.
Let A € Sym,,(R) and let A €]0, A]. Define

M(AND) =M (A=A L +A4 3 A

A:>0 A <0
MT(A N A) = =AY AN+AD N,
A: <0 A >0
where \;, i =1,2,...,n, are the eigenvalues of A.

An equivalent definition is given by

M~ (A NA) = inf tr(MA), MT(AANA)= sup tr(MA),
AIEA{:\.A A’IGAI,\J\
M), A being the set of all symmetric matrices with all eigenvalues in [A, A].
One verifies without difficulty that M~, M™ are uniformly elliptic with the
ellipticity constant C' := max{nA, nA} and that M~ is concave and M is convex.

EXAMPLE 1.1.7 (Hamilton-Jacobi-Bellman and Isaacs equations). These are
the fundamental partial differential equations for stochastic control and stochastic
differential games. The natural setting involves a collection of elliptic operators of
second-order depending either on one parameter « (in the Hamilton-Jacobi-Bellman
case) or two parameters «, 3 (in the case of Isaacs equations). These parameters
lie in some index sets. v

Let us define for a ](E),a;—’}‘ﬂ(m) € Sym,, (R)

(1.15) Lo :=)_af(z) 0r axj -y (.r)% — c*(z)u(z) + f*(x),
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2 .

5 LoBy e N @By Ol N By O e B,
(L1.6) L= a; (.1.)8:”8% > b (I)(')w,- — c*P(z)u(z) + f*P (),
all the coefficients being uniformly bounded and the linear operators (1.1.5) and
(1.1.6) being elliptic. Hamilton-Jacobi-Bellman equations are of the form

(1.1.7) sup L% = 0,
(83

and Isaacs equations are

(1.1.8) supinf £y = 0.
a B

Notice that for (1.1.7) the corresponding F' is concave in the variables (X, p,7)
while for (1.1.8) it is not generally the case.

More concrete examples of geometric origin include

ExamMpPLE 1.1.8 (General Monge-Ampere equations). The general Monge-
Ampere equation is
det D*u = ¢(Du, u, z)
where 1 is a given function on R"™ x R x R™. This equation is elliptic on the set
of convex functions. The most important case is the prescribed Gauss curvature
equation
G n+2
det D*u = K (u,z)(1 + |Dul?)"%",
the function K being given, and the equation means that K is the Gauss curvature
of the graph of u (with respect to an upwards directed normal).

ExaMPLE 1.1.9 (Transport Monge-Ampere equations). Initially the Monge-
Ampére equation came into mathematics as a solution of an applied problem of the
optimal mass transportation. Let G, G' be domains in R" and let ¢: G x G’ — R
be a cost function expressing the cost of transportation from a point of G to G’. Let
f and g be measures on G and G’ such that f(; f= f(;' g. For a measure-preserving
transportation function 7' : G — G’ the cost is given by

o(T) = /C o(z, T()).

Problem (Monge, 1784). Find a transportation function which minimizes the
cost.

Solution. A cost-minimizing function 7" satisfies 7' = Vu for some function
u on (G. Moreover, the function u satisfies the so-called transport Monge-Ampére
equation: (@)

2, e T _ [
det(D*u — ¢z (2, T(x))) JT@)

As was shown by Brenier [32] for the quadratic cost function, the last equation

is reduced to
f(x)

det D*u = m

ExamMmpPLE 1.1.10 (Complex Monge-Ampere and Donaldson’s equations). The
complexr Monge-Ampére equation has the form

0?u
det (8%6%) =/
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where u is a function of complex variables z;,...,z, and f > 0. When the solution
w is a C>-function, u is a pluri-subharmonic function, i.e., the Hermitian form
d;judz;dz; is positive. The complex Monge-Ampere equation

62“ =1 _ _tut+f
(1.1.9) det gﬁm det(g;;)” =e€

defined on a compact Kiihler manifold M with metric g;;, £ > 0, plays an important
role in the study of the geometry of M; see [18], [276]. Regularity of solutions
of (1.1.9) implies for manifolds with negative first Chern class the existence of a
Kahler-Einstein metric.

Donaldson’s equation. Let X be a surface. Donaldson, [75]. considered for a

given real parameter ¢ the following fully nonlinear equation on X x [0, 1]:
(1.1.10) ug (1 — Agu) — [Vau]* = ¢,
x € X,t € [0,1]. The equation (1.1.10) is the equation of geodesics on infinite
dimensional space of “Kahlerian potentials”. It can also be formally considered as
a Nahm’s equation of motion of a particle on an infinite-dimensional Lie group of
area-preserving diffeomorphisms of a surface X.

When X has dimension 1, (1.1.10) is the real Monge-Ampere operator. When
X is of dimension 2, (1.1.10) can be reduced to a complex Monge-Ampere operator
on X x S! x (0,1).

EXAMPLE 1.1.11 (Hessian equations). The Monge-Ampeére equation is a special
case of a Hessian equation,

(1.1.11) F(D?%u) := f(AM(D?*u)) = ¢(Du,u, x)
where f is a given symmetric function of n variables and
AD?u) = A= (Ar,..-, An)
denotes the eigenvalues of D?u. If the function f is continuously differentiable, then
the ellipticity of (1.1.11) is equivalent to the condition fy, > Oforalli =1,2,...,n.

Typical examples of functions f are the elementary symmetric functions

Jk(/\) - z ’\i1 o /\u.
1<iy< = <ig

and their quotients
ok(A)
ai(A)’
restricted to the positivity set of the denominator. In the case k = 1 we return to
(the slightly generalized) Example 1.1.1. The ellipticity of these operators is not
obvious and depends on the properties of some functions ox. However, one easily

checks that all these operators are elliptic on locally uniformly convex functions (all
/\,’ > 0)

ok1(A) == 1<l<k<n,

ExAMPLE 1.1.12 (Equations linear in symmetric functions o). These are Hes-
sian equations of the form

n
Zakak()\)=0, ar €R, k=0,...,n,
k=0
which are strictly elliptic for appropriate constants aj; they appear in some prob-
lems of differential geometry. However, they are never uniformly elliptic. From the
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results of [208] one can deduce that these equations can be rewritten in a variational
manner. Special Lagrangian equations (see Section 7.1),

Im{e~" det(I + iD?*u)} =0
belong to this class. Note that the equation of the form
or(A\) =1
sometimes is called the oy -equation.

ExampLE 1.1.13 (Curvature equations). The general form of a curvature equa-

tion (or so-called Weingarten equation) in Euclidean space is
F(u) == f(>¢(u)) = ¥ (Du,u, x)

where now s(u) = » = (5,...,,) denotes the principal curvatures of the graph
of v and again f is a given symmetric function of n variables. Since (3¢, ..., )
are the eigenvalues of the Hessian D?u with respect to the metric I + Du ® Du,
this equation is an equation of the form (1.1.1). The Gauss curvature equation
corresponds to the case f(3) = 0,,(3) =[], ». Other important examples are the
mean curvature, oq (), yielding a quasilinear elliptic equation, the scalar curvature
o2(3), and the harmonic curvature o, 1 ().

ExAMPLE 1.1.14 (Conformal Hessian equations). Let n > 3,u > 0, and let
Flu] == f(MA"Y)) = ¢¥(u, ),

f again being a symmetric function and A(A%) = (A1, ..., \,) being the eigenvalues
of the conformal Hessian

, . 1 >
AY = uD%u — §|Du|21.

In this case F' is invariant under conformal mappings 17" : R" — R", i.e., transfor-
mations which preserve angles between curves. In contrast to the case n = 2, for
n > 3 any conformal transformation of R" is decomposed into a family of finitely
many Mobius transformations, that is, mappings of the form

kA(x — 2

Tr =1+ ——( )
|£L‘ s Z|“

with 2,2 € R", k € R,a € {0,2}, and an orthogonal matrix A. In other words,
each T' is a composition of a translation, a homothety, a rotation, and (maybe) an
inversion.

1.1.2. Uniqueness, existence, and regularity problems. Let us then dis-
cuss solutions of nonlinear elliptic equations. There are many problem types for
them, but we will study only the most simple (and most fundamental) formulation,
namely, the following Dirichlet problem:

{F(Dzu, Du,u,z) =0 inQ,

1.1.12
( ) U= on JS,

where €2 C R"™ is a bounded domain with a smooth boundary 02 and ¢ is a
continuous function on 95).

A function u is called a classical solution of (1.1.12) if u € C*(f2) and u satisfies
(1.1.12). Actually, any classical solution of (1.1.12) is a smooth (C“*?) solution,
provided that F is a C* function of its arguments with « > 1, ¢ N.
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Assuming that 9F/0u < 0, it is not difficult to prove that (1.1.12) has no more
than one classical solution and thus classical solutions verify the fundamental con-
dition of uniqueness. The basic problem is the existence of such classical solutions,
and there is no hope of getting such an existence for a sufficiently general class of
nonlinear elliptic equations at least for n > 3 (for n = 2 the solutions are classical
for uniformly elliptic equations by Nirenberg [186]).

The only way out is to define a class of generalized (weak) solutions for the
problem (1.1.12) in such a manner that the unicity and existence of solutions may
be verified in this class. That is possible for nonlinear elliptic equations (NLEE),
which constitutes a major breakthrough in the theory of partial differential equa-
tions resulting in the theory of viscosity solutions described in the next section.
These solutions are by definition merely continuous functions, and this leads to
another major question, the regularity problem, namely, what can be said about
differentiability and continuity properties of those generalized solutions. This last
problem is very far from a satisfactory answer except for some specific classes of
NLEE.

However, there do exist some classes of NLEE with advanced regularity proper-
ties, sometimes giving classical solutions. A major part of these results is obtained
using the continuity method, a priori bounds, and maximum principles. Now we
comment briefly on those fundamental methods.

1.1.3. Continuity method, a priori bounds, and maximum princi-
ple(s). The general setting of the continuity method is as follows. To prove the
existence of a regular solution to a certain elliptic equation, one chooses a contin-
uous family F; of equations parametrized, say, by a unit interval ¢ € [0, 1] in such
a way that for Fy regular solutions do exist, F; being the initial equation. For ex-
ample, one can often choose Fj to be the Laplacian equation Au = 0 for which one
has very precise and complete information. One then considers the maximal subset
S c [0,1] such that for any ¢ € S the equation F; has an appropriate solution;
therefore 0 € S. If one can prove that S is open and closed, then S = [0,1] by
connectedness of the interval and thus the problem is solved. Therefore, to solve
the problem one needs to prove

1) S is open in [0, 1],

2) S is closed in [0,1].

The first point is usually much simpler than the second; often it is a consequence
of some general results on implicit functions in appropriate functional spaces. To
prove 2) one often uses theorems of Arzela-Ascoli type; to apply these theorems one
needs some upper bounds of appropriate norms of smooth solutions to the initial
equation. To be useful, those bounds should not be dependent on the solutions
themselves, but on other data such as the ellipticity constant, boundary data, the
domain’s geometry, etc. Such bounds are called a priori and their proof is usually
the only possibility of proving the existence of sufficiently smooth solutions. One
finds some examples of a priori bounds in the next section.

Another essential tool of the theory is given by mazimum principles, the most
simple being the maximum principle for harmonic functions, i.e., for Laplace’s
equation.

THEOREM 1.1.1. Let u be a solution to the Dirichlet problem (1.1.12) for
Laplace’s equation Aw = 0. Then w attains its supremum on the boundary of §2.
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In the nonlinear context one often uses the Alexandrov-Bakelman-Pucci (ABP)
maximum principle; see Theorem 1.3.1 below.

1.2. Viscosity solutions

In defining the weak solution to fully nonlinear equations, we have to decide
what property of the classical solutions we want to keep instead of considering
smooth functions which satisfy the equation. For equations written in variational
form one immediately gets an integral identity for the solutions and it is natural to
keep such an identity as a characteristic property of the weak solutions. For general
fully nonlinear equations that does not work. Fortunately, there is another universal
property of the solutions which one can try to use. We will suppose here and below
that the functional F depends only on the Hessian D*u of the unknown function
and thus equation (1.1.1) becomes (0.1) of the Preface; the same is supposed for
the Dirichlet problem (1.1.12).

Let F be an elliptic operator and let u € C?(£2) be a subsolution (F(D*u) < 0)
in a domain Q. Let v € C%(Q) be a supersolution (F(D?*u) > 0) in Q. Then u — v
attains its supremum on the boundary of 2. That is the maximum principle for
classical solutions of fully nonlinear equations. The idea of viscosity solutions is
to extend the notions of sub/supersolutions to a large set of nonsmooth functions
preserving the maximum principle.

Notice that weak solutions do not necessarily increase the set of classical solu-
tions. In some situations they are automatically classical. For instance, consider
the Laplace operator. The weak solutions in a variational sense are defined as
functions u € H'(Q) which satisfy the following integral identity:

/ VuVihdr = 0,
?)

for any smooth function v/ vanishing on 9§2. By classical results of Weyl, weak
solutions in the sense of this integral identity are smooth functions in any open
domain and satisfy the Laplace equation; see, e.g., [84]. Therefore, one should verify
that the idea of weak solutions works in the general case, increasing sufficiently the
set of possible solutions.

One of the classical methods for the solution of the Dirichlet problem for the
Laplace equation was suggested by Perron in his 1923 paper [200]. He defined a
solution to the Dirichlet problem in a bounded domain 2 for the Laplace oper-
ator taking the infimum of superharmonic functions which are on the boundary
O greater than or equal to the boundary data. Perron proved that there is a
unique such infimum which gives a solution to the Dirichlet problem. The wviscosity
solutions to fully nonlinear equations can be defined in a similar way:

DEFINITION 1.2.1. Let G be a bounded domain. A continuous function u in G
is a viscosity subsolution of

F(D%*u) = f

in G if the following condition holds: For any y € G, ¢ € C?%(G) such that u — ¢
has a local maximum at y one has

F(D*¢(y)) = f ().



