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PREFACE

“Elementary” is often used to denote a level at which one is exposed
superficially to a body of knowledge which will probably never be used again.
The term, as used here, implies the lowest level of completeness and sophisti-
cation necessary in order for the chemist to acquire the competence needed to
begin a serious, nontrivial understanding of the research literature of the late
twentieth century—a research literature in which quantum concepts are playing
an ever-increasing role.

Experimental chemists have progressed well beyond the point of studying
the “average” behavior of reacting species described by the Arrhenius rate
equation and are beginning to probe the step-by-step behavior of individual
atoms and molecules as they collide, form “transition states,” and ultimately
form products. Such experiments are generally assisted by sophisticated quan-
tum mechanical calculations of potential-energy surfaces—computations which
help to fill gaps in observation and which assist in the interpretation of what is
observed. Similarly, organic and inorganic chemists are studying increasingly
sophisticated aspects of molecular behavior (e.g., photodissociation), the un-
derstanding of which requires a much deeper insight into quantum theory than
provided by the “hand-waving” treatments of the past. As Fritz Schaefer has
pointed out, theory has become accepted by organic, inorganic, and physical
chemists as a legitimate tool for the study of legitimate chemical problems.
Although this text stops far short of describing the level of computations and
concepts needed in all such studies, it does attempt to provide a suitable
foundation upon which expertise in such endeavors can be built.

The author has taught the material in this text to advanced undergraduate
students and to beginning graduate students. At the undergraduate level it is
sometimes necessary (particularly in a one-semester course) to limit oneself to
only the simpler aspects of a topic and to spend less time on details of
mathematical formalism, molecular symmetry, and molecular orbital calcula-
tions. It is assumed that the student has had mathematics through calculus and
at least one year of undergraduate physics taught on the basis of calculus. A
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background in differential equations, linear algebra, and modern (or atomic)
physics is very helpful but not absolutely essential. Mathematical and physical
material not necessarily assumed to be part of the students’ background—and
which may be useful to some as a review—is supplied in a number of
appendixes. The first edition worked most of these right into the text material
itself; 1 hope the change won’t tempt some students to forgo these topics
entirely.

The present edition differs from the first in two very important aspects:
first, rather than being derived entirely from the published works of others,
many features of atomic and molecular structure are illustrated by calculations
carried out specifically for this text; second, there are a number of computer-
generated diagrams (e.g., so-called three-dimensional, or surface, orbital plots)
which I have also constructed personally. Furthermore, all these computations
and graphics can be reproduced by students using relatively modest computa-
tional facilities and readily available programs and software, e.g., GAMESS,
Gaussian 88 (and previous versions), and RS/1. Some calculations can even be
done on microcomputers such as the IBM PC (or compatibles) and the
Macintosh series—or even on an Apple II, 11+, Ile, Ilc, IIGS, or various other
popular micros.

I am constantly aware of what a huge debt I owe to the sources of much of
my material: the numerous books, journals, and technical reports I have
read—and perhaps most important of all, the very inspiring teachers and
colleagues I have had. Those who have influenced me to a special degree
deserve at least my explicit thanks: Prof. Hans H. Jaffé (University of
Cincinnati), my first teacher in quantum chemistry; Prof. Per-Olov Lowdin
(Uppsala University and University of Florida), who influenced my philosophi-
cal approach to quantum chemistry; Prof. Ruben Pauncz (Technion, Israel
Institute of Technology), who gave the clearest, most beautiful lectures I have
ever heard in quantum chemistry; Prof. J. de Heer (University of Colorado),
whose trenchant wit enlivened some otherwise mundane topics; and the late
Charles A. Coulson (Oxford University), who was my gracious host during a
pleasant year’s stay at the Mathematical Institute. Also, in a very special and
personal way, I thank my wife, Anita, for her years of loyal support of a
project which has benefited her very little in a material way. I also thank my
five children for outgrowing the crayon years; this means that the backsides of
manuscript pages of the second edition escaped becoming ‘“‘artwork,” a fate
befalling some of the pages of the first edition.

Finally, my special thanks to four colleagues who reviewed portions of the
final manuscript: Ernest Davidson, Indiana University; Mark Gordon, North
Dakota State University; Hans Jaffé, the University of Cincinnati; and George
Petersson, Wesleyan University.

Frank L. Pilar
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CHAPTER

ORIGINS
OF THE
QUANTUM
THEORY

Toward the close of the nineteenth century, many scientists thought that
physics was virtually a closed book. As Sir William Cecil Dampier wrote in A
History of Science: ‘It seemed as though the main framework had been put
together once and for all, and that little remained to be done but to measure
physical constants to the increased accuracy represented by another decimal
point.”" Yet, the beginnings of a profound revolution were already brewing—a
revolution which would change drastically how scientists and philosophers
would view the structure of the universe. In just one short generation the
theories of relativity and quanta changed physics and its dependent sciences
more comprehensively than had ever occurred before. The present chapter
summarizes some of the early work which led to modern quantum mechanics
and some of its more important applications to chemistry.

" Quoted by O. W. Greenberg, American Scientist, July—August 1988, p. 361. See also comments
in Phys. Today, April 1968, p. 56; August 1968, pp. 9, 11; and January 1969,
p- 9.
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1-1 THE SPECTRAL SHAPE OF
BLACKBODY RADIATION

When a solid is heated to some temperature 7, it emits radiation (of which
visible light is one specific example). Experiments show that the radiation
consists of a spread of different wavelengths, each wavelength generally
appearing with a different intensity. Normally, each temperature is character-
ized by a given radiation wavelength whose energy density is higher than that
of radiation of either higher or lower wavelengths; i.e., the energy of the
radiation exhibits a maximum value for some particular frequency, and such
maxima occur at different frequencies for different temperatures. Figure 1-1
shows how the energy density varies with wavelength for several different
temperatures. This figure represents the radiation emitted by an idealized
material known as a blackbody—a hypothetical material which absorbs all
incident radiation and is also a perfect emitter of this radiation. For experimen-
tal purposes, an acceptable blackbody may be approximated by an enclosed
cavity, the walls of which are kept at some temperature 7 and which have a
small hole in one side. The blackbody radiation shown at 5700 °C is very close
to that emitted by our sun; most of the emitted radiation falls within that

portion of the electromagnetic spectrum known as visible light [approximately
400 to 700 nanometers (nm)].
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FIGURE 1-1

The spectral shape of blackbody radiation at three different temperatures. The curve at 5700 °C
closely resembles the emissive behavior of the sun. The 1700 °C curve represents a body that emits
primarily infrared radiation.
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Although many renowned physicists tried to provide a theoretical expla-
nation of the details of blackbody radiation, none of the attempts based on
classical mechanics succeeded. Nevertheless, it was known that the emitted
energy obeyed a relationship of the general form

8

p, dv=— v’F(x) dv (1-1)
(d

where p, dv =energy density of radiation having a frequency between v
and v + dv
¢ = velocity of light (in a vacuum)
F(x) = some unknown function of x = v/T

The appearance of the variable x originates in the Wien displacement law
Apar T =2.90 X 10° nm - K (approx) (1-2)

an expression which the German physicist Wilhelm Wien managed to derive
using classical methods. Here A ,, represents that predominant wavelength for
which the energy density of the blackbody emission is a maximum. However,
all attempts by Wien and his contemporaries to obtain an explicit mathematical
form for the function F(x) by the use of classical mechanics failed. In
particular, all classical attempts to account for the spectral shape of blackbody
radiation predicted what is often called the wultraviolet catastrophe; i.e.,

lim p(v) =lim p(A) =

This means that classical theory could not account for the appearance of a
maximum in the spectral distribution.

In 1900 the German thermodynamicist Max Planck obtained an empirical
form for F(x):

F(x) = kB(e®* —1)" (1-3)

where k is Boltzmann’s constant (the ideal gas constant R divided by Avo-
gadro’s number) and B is an empirical constant (of unknown significance at this
point). Planck then proceeded to derive Eq. (1-3) by making some unconven-
tional assumptions about the nature of the blackbody emitter. Since Planck’s
original approach remains somewhat unclear even to this day, and since Planck
himself subsequently modified his assumptions several times, only those ideas
which have remained essentially unmodified to this day are given here.
Basically, Planck treated the blackbody as a collection of isotropic oscillators
capable of interacting with electromagnetic radiation, each oscillator having a
vibrational frequency ». Planck then proposed two new nonclassical ideas:

1. Each of the oscillators has a discrete set of possible energy values given by
€, = nhv (1-4)

where n=0, 1, 2,..., and h is a constant independent of blackbody
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composition.” Unlike in classical mechanics (which would allow €, to have a
continuum of values) Planck’s formula implies that the energy of a black-
body oscillator is quantized, i.e., exists as packets, bundles, or quanta of
size hv.

2. The emission and absorption of radiation are associated with transitions, or
jumps, between two different energy “levels.” Each emission or absorption
involves loss or gain of a quantum of radiant energy of magnitude hv, v
being the frequency of the radiation absorbed or emitted.

Planck also imposed the requirement that the entropy and the energy
must be related by the relationship dS = dE/T, where (by the second law of
thermodynamics) 7" must be the same for all radiation frequencies. He then
calculated the average energy of an oscillator, using Eq. (1-4) and classical
Maxwell-Boltzmann statistics, to show that the constant 8 in F(x) was simply
h/k so that

F(x) = h(e""*"-1)"" {(1-5)

The constant 4 (now called Planck’s constant) has the dimensions of action
(energy X time) and is sometimes called the quantum of action. It also has the
dimensions of angular momentum. The modern numerical value of Planck’s
constant is 6.626196 x 10 >*J-s. Although Planck spent most of his life
believing that the assumption of Eq. (1-4) was fundamentally incorrect and
only fortuitously led to a successful blackbody equation, we now know that the
constant A is a fundamental constant related to all dynamic discontinuities in
nature, especially evident on the atomic and subatomic scale.

EXERCISES

1-1. Verify Eq. (1-5) using the following information: the average energy of an
oscillator is given by Maxwell-Boltzmann statistics as

i € e /KT
n
€=vF(x)= e
w
E e—sn/kT
n=0

You will also need the relationships (1—y) '=1+y+y>+y’+--- and (1—
YW i=1+2y+3y> +4y> +---.

?In actuality, Planck did not quantize the individual oscillators but assumed that the total energy
possessed at equilibrium by all oscillators in the frequency range v to v + dv equals a multiple of
hv. See T. S. Kuhn, Black-Body Radiation and the Quantum Discontinuity, Oxford University
Press, New York, 1978. It is now known that the correct formula is €, = (n + 4 )hAv, but this is of no
consequence in the present context.



