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Portrait of Evariste Galois aged fifteen (Fig. 1).
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Preface to the first edition

Galois theory is a showpiece of mathematical unification, bringing
together several different branches of the subject and creating a power-
ful machine for the study of problems of considerable historical and
mathematical importance. This book is an attempt to present the theory
in such a light, and in a manner suitable for second- and third-year
undergraduates.

The central theme is the application of the Galois group to the quintic
equation. As well as the traditional approach by way of the ‘general’
polynomial equation I have included a direct approach which demon-
strates the insolubility by radicals of a specific quintic polynomial with
integer coefficients, which I feel is a more convincing result. The
abstract Galois theory is set in the context of arbitrary field extensions,
rather than just subfields of the complex numbers; the resulting gain in
generality more than compensates for the extra work required. Other
topics covered are the problems of duplicating the cube, trisecting the
angle, and squaring the circle; the construction of regular polygons; the
solution of cubic and quartic equations; the structure of finite fields; and
the ‘fundamental theorem of algbra’. The last is proved by almost purely
algebraic methods, and provides an interesting application of Sylow
theory.

In order to make the treatment as self-contained as possible, and to
bring together all the relevant material in a single volume, [ have
included several digressions. The most important of these is a proof of
the transcendence of 7, which all mathematicians should see at least
once in their lives. There is a discussion of Fermat numbers, to
emphasize that the problem of regular polygons, although reduced to a
simple-looking question in number theory, is by no means completely
solved. A construction for the regular 17-gon is given, on the grounds
that such an unintuitive result requires more than just an existence
proof.



viii  Preface to the first edition

Much of the motivation for the subject is historical, and I have taken
the opportunity to weave historical comments into the body of the book
where appropriate. There are two sections of purely historical matter: a
short sketch of the history of polynomials, and a biography of Evariste
Galois. The latter is culled from several sources (listed in the references)
of which by far the most useful and accurate is that of Dupuy (1896).

I have tried to give plenty of examples in the text to illustrate the
general theory, and have devoted one chapter to a detailed study of the
Galois group of a particular field extension. There are nearly two
hundred exercises, with twenty harder ones for the more advanced
student.

Many people have helped, advised, or otherwise influenced me in
writing this book, and I am suitably grateful to them. In particular my
thanks are due to Rolph Schwarzenberger and David Tall, who read
successive drafts of the manuscript; to Len Bulmer and the staff of the
University of Warwick Library for locating documents relevant to the
historical aspects of the subject; to Ronnie Brown for editorial guidance
and much good advice; and to the referee who pointed out a multitude
of sins of omission and commission on my part, whose name I fear will
forever remain a mystery to me, owing to the system of secrecy without
which referees would be in continual danger of violent retribution from
indignant authors.

University of Warwick IAN STEWART
Coventry
April 1972



Preface to the second
edition

It is sixteen years since the first edition of Galois Theory appeared.
Classical Galois theory is not the kind of subject that undergoes
tremendous revolutions, and a large part of the first edition remains
intact in this, its successor. Nevertheless, a certain thinning at the
temples and creaking of the joints have become apparent, and some
rejuvenation is in order.

The main changes in this edition are the addition of an introductory
overview and a chapter on the calculation of Galois groups. I have also
included extra motivating examples and modified the exercises. Known
misprints have been corrected, but since this edition has been complete-
ly reset there will no doubt be some new ones to tax the reader’s
ingenuity (and patience). The historical section has been modified in the
light of new findings, and the publisher has kindly permitted me to do
what I wanted to do in the first edition, namely, include photographs
from Galois’s manuscripts, and other historical illustrations. Some of the
mathematical proofs have been changed to improve their clarity, and in
a few cases their correctness. Some material that I now consider
superfluous has been deleted. I have tried to preserve the informal style
of the original, which for many people was the book’s greatest virtue.

The new version has benefited from advice from several quarters.
Lists of typographical and mathematical errors have been sent to me by
Stephen Barber, Owen Brison, Bob Coates, Philip Higgins, David
Holden, Frans Oort, Miles Reid, and C. F. Wright. The Open Univer-
sity used the first edition as the basis for course M333, and several
members of its Mathematics Department have passed on to me the
lessons that were learned as a result. I record for posterity my favourite
example of OU wit, occasioned by a mistake in the index: 226:



x  Preface to the second edition

Stéphanie D. xix. Should refer to page xxi (the course of true love never
does run smooth, nor does it get indexed correctly).’

I am grateful to them, and to their students, who acted as unwitting
guinea-pigs: take heart, for your squeaks have not gone unheeded.

University of Warwick IAN STEWART
Coventry
December 1988



Notes to the reader

Theorems, lemmas, propositions, corollaries, and the like are numbered
consecutively within chapters by numbers of the form m.n where m is
the chapter number and n indicates the position within the chapter.

Exercises are given at the end of each chapter (with two exceptions)
and are numbered in a similar fashion. Harder exercises are signalled by
an asterisk (*). Solutions are given to some of the exercises, mostly
those whose solution can be made brief.

Definitions are usually, but not always, signalled by the word Defini-
tion.

Equations which need to be referred to are numbered (m.n) as above,
at the right-hand side of the page, the numbering starting afresh with
each chapter.

References are given at the back, and are signalled in the text in the
form ‘William (1066)’.

STRUCTURE

Each brick (see Fig.2 overleaf) represents a chapter. Mathematical
dependence of chapters corresponding to structural dependence of
bricks.

For a short course aimed directly at the insolubility of the quintic
equation the sequence of Chapters 1-4, 7-11, 13, 14, is recommended.
Alternatively the third subsection of Chapter 13 may be omitted,
together with the second half of Chapter 14 and Chapter 15 substituted.
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Fig. 2 Structure of the book: each chapter depends on those that
support it.



Historical introduction

Polynomial equations have a lengthy history. A Babylonian tablet of c.
1600 BC poses problems which reduce to the solution of quadratic
equations (Midonick, 1965, p. 48); and it is clear from the tablets that
the Babylonians possessed methods of solving them (Bourbaki, 1969,
p. 92) although they had no algebraic notation with which to express
their solution. The ancient Greeks solved quadratics by geometrical
constructions, but there is no sign of an algebraic formulation until at
least Ap 100 (Bourbaki, 1969, p. 92). They also had methods applicable
to cubic equations, involving points of intersection of conics. Algebraic
solutions of the cubic were unknown, and in 1494 Pacioli ended his
Summa di Arithmetica (Fig. 3) with the remark that the solution of the
equations x* 4+ mx =n and x* + n = mx was as impossible at the
existing state of knowledge as squaring the circle.

The Renaissance mathematicians at Bologna discovered that the
solution of the cubic could be reduced to that of three basic types:
x* 4+ px =gq, x* = px + q, x* + g = px. They were forced to distinguish
these cases because they did not recognize the existence of negative
numbers. Scipio del Ferro is believed on good authority (Bortolotti,
1925) to have solved all three types; he certainly passed on his method
for one type to a student, Fior. News of the solution leaked out, and
others were encouraged to try their hand; and solutions were redis-
covered by Niccolo Fontana (nicknamed Tartaglia, Fig. 4) in 1535.
Fontana demonstrated his methods in a public competition with Fior,
but refused to reveal the details. Finally he was persuaded to tell them
to the physician Girolamo Cardano, having first sworn him to secrecy.
But when Cardano’s Ars Magna appeared in 1545 it contained a
complete discussion of Fontana’s solution — with full acknowledgement
to the discoverer. Although Cardano (1931) claimed motives of the
highest order, Fontana was justifiably annoyed, and in the ensuing
wrangle the history of the discovery became public knowledge.
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Fig. 3 A page from Pacioli’s Summa di Arithmetica.

The Ars Magna (Fig.5) also contained a method, due to Ludovico
Ferrari, of solving the quartic equation by reducing it to a cubic.

All the formulae discovered had one striking property, which can be
illustrated by Fontana’s solution of x* + px = ¢:

o=+ s+ 3l -V

The expression is built up from the coefficients by repeated addition,
subtraction, multiplication, division, and extraction of roots. Such ex-
pressions became known as radical expressions. Since all equations of
degree =<4 were now solved, it was natural to ask how the quintic
equation could be solved by radicals.
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Fig. 4 Niccolo Fontana (Tartaglia), who discovered how to solve cubic
equations.

Many mathematicians attacked the problem. Tschirnhaus claimed a
solution, recognized as fallacious by Leibniz. Euler failed to solve the
problem but found new methods for the quartic. Lagrange took an
important step in 1770 when he unified the separate tricks used for the
equations of degree =4. He showed that they depended on finding
functions of the roots of the equation which were unchanged by certain
permutations of those roots; and he showed that this approach failed
when tried on the quintic. A general feeling that the quintic could not
be solved by radicals was now in the air; and in 1813 Ruffini attempted
to give a proof of the impossibility. His paper appeared in an obscure
journal, with several gaps in the proof (Bourbaki, 1969, p. 103) and
attracted little attention. The question was finally settled by Abel in
1824, who proved conclusively that the general quintic equation was
insoluble by radicals.

The problem now arose of finding a way of deciding whether or not a
given equation could be solved by radicals. Abel was working on it
when he died in 1829. In 1832 a young Frenchman, Evariste Galois, was



xvi  Historical introduction

HIERONYMI CAR

DANI, PRASTANTISSIMI MATHE

MATICI, PHILOSOPHIL AC MIDIC],

ARTIS MAGNA,

SIVE DE REGVLIS ALGEBRAICIS,

Lib.unus. Qui & totius operis de Arithmerica, quod

OPVS PERFECTVM
infaripie,eft in ordine Decimus,

ane adsnueniorubus o0 demant o cwabis o0 Al hore da

Aher s b R idote L@ v Regulas Algrbranay 2l e i of
Hm
iy
-

W pauculis anies yulge - oo Nes

v muas numerus alten aur du s e oot fo duobus

i v equales Ruerine, nodum explican = el el mage Nlive

Im ~de ¢ placur,at hoc abftrufilsimo, & plave ws s e A'”"',"""

a2 near anlucem eruto, & quafl in rhea W s & 0" ifecteN

dum cxpeio, Lectores incitaretur,ut relign - - 2 02 3 W % gl
" umo s edentur,tanto auidius ampleantu « - & @ e did a0

Fig. 5 Title page of Cardano’s Ars Magna.

killed in a duel. He had for some time sought recognition for his
mathematical theories, submitting three memoirs to the Academy of
Sciences in Paris. They were all rejected; and his work appeared to be
lost to the mathematical world. Then, on 4 July 1843, Joseph Liouville
addressed the academy. He opened with these words:

‘I hope to interest the Academy in announcing that among the
papers of Evariste Galois I have found a solution, as precise as it is
profound, of this beautiful problem: whether or not it is soluble by
radicals. . . .



The life of Galois

Evariste Galois (Fig. 6) was born at Bourg-la-Reine near Paris on 25
October 1811. His father Nicolas-Gabriel Galois was a Republican
(Kollros, 1949) and head of the village liberal party; after the return to
the throne of Louis XVIII in 1814 he became mayor. Evariste’s mother
Adelaide-Marie (née Demante) was the daughter of a jurisconsult. She
was a fluent reader of Latin, thanks to a solid education in religion and
the classics.

For the first twelve years of his life Galois was educated by his
mother, who passed on to him a thorough grounding in the classics. His
childhood appears to have been a happy one. At the age of ten he was
offered a place at the college of Reims, but his mother preferred to
keep him at home. In October 1823 he entered the lycée Louis-le-
Grand. During his first term there the students rebelled and refused to
chant in chapel, and a hundred of them were expelled.

Galois performed well during his first two years at school, obtaining
first prize in Latin; but then boredom set in. He was made to repeat the
next year's classes, but this simply aggravated the tedium. It was during
this period that Galois began to take a serious interest in mathematics.
He came across a copy of Legendre’s Eléments de Géoméirie, a classic
text which broke with the Euclidean tradition of school geometry. It is
said (see Bell, 1965), that he read it ‘like a novel” and mastered it in one
rcading. The school algebra texts could not compete with Legendre’s
masterpiece, and Galois turned instead to the original memoirs of
Lagrange and Abel. At the age of fifteen he was reading material
written for professional mathematicians. But his classwork remained un-
inspired; it would seem that he had lost all interest in it. His teachers mis-
understood him and accused him of affecting ambition and originality.

Galois was an untidy worker, as can be seen from some of his
manuscripts (Bourgne and Azra, 1962); and he tended to work in his
head. committing only the results of his deliberations to paper. His



