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Preface

This is a record of my research on multiple zeta values since 2007. In a series

of lecture notes used in classes or in seminars on number theory, I provided

detailed proofs for both newly found and well-known results. These lecture

notes were extremely useful and helpful to my graduate students in learn-

ing number theory and writing their thesis. Some particularly interesting

sections were published as research papers. These lecture notes are now

reworked into a book, which I hope will also be helpful for researchers.

This book contains the following important topics concerning multiple zeta

values and applications.

I

The duality theorem, the sum formula and the restricted sum formula
of multiple zeta values.

Shuffle relations produced from shuffle products of multiple zeta
values.

Double weighted sum formulas of multiple zeta values.
Applications of shuffle products in combinatorics.
Combinatorial identities of convolution type.

Generalizations of Pascal identity.



vi Preface

Around 2005, my former Ph.D student Kwang-Wu Chen and I found
that Euler double sums of odd weight can be obtained from integral trans-
forms of products of two Bernoulli polynomials, one with even index and
the other with odd index. The evaluations of double Euler sums of odd
weight are equivalent to express the corresponding products of Bernoulli
polynomials into linear combinations of Bernoulli polynomials of odd in-
dices. Therefore we published several papers concerning evaluations of Eu-
ler double sums as well as their analogues. Among other things, a Dirichlet
character is added to the first summation of Euler double sums so that it
can be evaluated such that either the character is even and the weight is
odd, or the character is odd and the weight is even.

Multiple zeta values or r-fold Euler sums are natural generalizations of
Euler double sums which arose from the knot theory with close relation
to Feynman diagrams in quantum physics. In 2007, we began to develop
effective ways to explicitly evaluate multiple zeta values of depth 3,4 or
higher. It ended up with the introduction of multiple zeta values with
parameters, something like to replace Riemann zeta functions by Hurwitz
zeta functions. We noticed that multiple zeta values of the form ¢({1}™, n+
2) were much easier to be evaluated. Also certain analogues of (({1}™,n+2)
with parameters can also be evaluated easily. Additional differentiations are
needed in order to evaluate multiple zeta values with the sum of depth and
weight is odd.

Due to Kontsevich, multiple zeta values are expressed as iterated in-
tegrals over simplices of weight dimensions of strings of differential forms.
Only two kinds of differential forms appear: dt/(1 —t) or dt/t. Moreover
it always begins with dt/(1 — t) and ends up with dt/t. Once multiple
zeta values are expressed as iterated integrals over simplices, the shuffle
product of two multiple zeta values is equivalent to find all possible inter-
lacings of two sets of variables. So two multiple zeta values of weight m
and n will produce ("'™) multiple zeta values of weight m + n after their
shuffle product. Based on such a simple fact, we are able to produce com-
binatorial identities from shuffle relations obtained from shuffle products of

certain multiple zeta values.

Some particular multiple zeta values such as {({1}™,n + 2) or sums of

multiple zeta values can be expressed as integrals in one or two variables so



Preface vii

that their shuffle products can be carried out more efficiently. By counting
numbers of multiple zeta values produced from shuffle products, we may
obtain combinatorial identities with a single binomial coefficient on one side
and sums of products of binomial coefficients on the other side.

The theory of multiple zeta values is not fully developed. Devoted
wholly to this subject, this book aims to introduce a systematic theory of
multiple zeta values as well as applications of shuffle products to combina-
torics. Hopefully, this will lead to further developments of the theory and
provide inspiration to both experts and amateurs.

Finally, I would like to thank my graduate students who helped to type
the whole book, thank my Ph.D student Chung for compiling the files and
thank my colleague Professor Chang for the final editing.

Minking Eie

October 29, 2012

Department of Mathematics
National Chung Cheng University
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Part 1

Basic Theory of Multiple
Zeta Values






The theory of multiple zeta values began with the evaluation of Euler
double sums in terms of special values at positive integers of Riemann zeta
function, proposed by Goldbach in 1742 to Euler. Until 1992, multi-versions
of Euler double sums appeared and are called multiple zeta values or r-fold
Euler sums.

A multiple zeta value of depth r and weight w can be expressed as a sum
of multiple zeta values of lower depth and the same weight when r + w is
odd. Some particular multiple zeta values and sums of multiple zeta values
can be expressed in terms of single zeta values, the special values at pos-
itive integers of Riemann zeta function. All these assertions need further
investigation through integral representation of multiple zeta values due to
Kontsevich around 1996.

The shuffle product of two multiple zeta values enables us to express the

m+n)

product of two multiple zeta values of weight m and n as a sum of ( -

zeta values of weight m + n. How to carry out the shuffle product becomes
an intricate problem. Fortunately, we are able to develop an alternative to
overcome such difficulty.






