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Preface

Water management is taking on new dimensions. New federal thrusts, the grow-
ing list of global issues, and strong public sentiment regarding environmental protec-
tion have been the principal driving forces.

In the early years of the 20th century, water resources development and manage-
ment were focused almost exclusively on water supply and flood control. Today, these
issues are still important, but protecting the environment, ensuring safe drinking
water, and providing aesthetic and recreatioinal experiences compete equally for
attention and funds. Furthermore, an environmentally conscious public is pressing for
greater reliance on improved management practices, with fewer structural compo-
nents, to solve this nation’s water problems. The notion of continually striving to
provide more water has been replaced by one of husbanding this precious natural
resource.

There is a growing constituency for allocating water for the benefit of fish and
wildlife, for protection of marshes and estuary areas, and for other natural system
uses. But estimating the quantities of water needed for environmental protection and
for maintaining and/or restoring natural systems is difficult, and there are still many
unknowns. Scientific data are sparse, and our understanding of the complex interac-
tions inherent in ecosystems of all scales is rudimentary. Indeed, this is a critical issue,
since the quantities of water involved in environmental protection can be substantial
and competition for these waters from traditional water users is keen. The nations of
the world are facing major decisions regarding natural systems—decisions that are
laden with significant economic and social impacts. Thus there is an urgency associ-
ated with developing a better understanding of ecologic systems and of their hydrologic
components.

Water policies of the future must therefore take on broader dimensions. More
emphasis must be placed on regional planning and management, and regional institu-
tions to accommodate this must be devised. Water management must be practiced at,
and between, all levels of government. Land use and water use planning must be more
tightly coordinated as well.
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PREFACE

Water scientists and engineers of tomorrow must be equipped to address a
diversity of issues such as: the design and operation of data retrieval and storage
systems; forecasting; developing alternative water use futures; estimating water re-
quirements for natural systems; exploring the impacts of climate change; developing
more efficient systems for applying water in all water-using sectors; and analyzing and
designing water management systems incorporating technical, economic, environ-
mental, social, legal, and political elements. A knowledge of hydrologic principles is
a requisite for dealing with such issues.

This fourth edition has been designed to meet the contemporary needs of water
scientists and engineers. It is organized to accommodate students and practitioners
who are concerned with the development, management, and protection of water
resources. The format of the book follows that of its predecessor, providing material
for both an introductory and a more advanced course.

Parts One through Four provide the basics for a beginning level course, while
Parts Five and Six may be used for a more advanced course on hydrologic model-
ing. This fourth edition has been updated throughout, and many solved examples
have been added. In addition, new computer approaches have been introduced and
problem-solving techniques include the use of spreadsheets as appropriate. New fea-
tures of each chapter include an introductory statement of contents and, at the conclu-
sion of the chapter, a summary of key points.

Many sources have been drawn upon to provide subject matter for this book,
and the authors hope that suitable acknowledgment has been given to them.
Colleagues and students are recognized for their helpful comments and reviews, par-
ticularly the following reviewers.

Gert Aron, The Pennsylvania State University

John W. Bird, University of Nevada-Reno

Istvan Bogardi, University of Nebraska

Ronald A. Chadderton, Villanova University

Richard N. Downer, University of Vermont

Bruce E. Larock, University of California—Davis
Frank D. Masch, University of Texas—San Antonio
Philip L. Thompson, Federal Highway Administration

A special note of thanks is due to Dr. John W. Knapp, President of the Virginia
Military Institute, coauthor of previous editions of this book, for his past contributions
and valuable guidance.

Warren Viessman, Jr.
Gary L. Lewis
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CHAPTER 5 EVAPORATION AND TRANSPIRATION
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Figure 5.5 Average daily consumption of water: (a) for
year 1953 by corn, followed by winter wheat under
irrigation; (b) for year 1955, with irrigated first-year
meadow of alfalfa, red clover, and timothy. Both
measurements taken on lysimeter Y 102 C at the Soil and
Water Conservation Research Station, Coshocton, Ohio.
(After Holtan et al.?%)
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Figure 5.6 Growth index GI = ET/ET,,  from
lysimeter records, irrigated corn, and hay for 1955, from
Coshocton, Ohio. (After Holtan et al.?%)
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TABLE 5.5 HYDROLOGIC CAPACITIES OF SOIL TEXTURE CLASSES

S G* AWC* X
Texture class (%) (%) (%) AWC/G
Coarse sand 24.4 17.7 6.7 0.38
Coarse sandy loam 24.5 15.8 8.7 0.55
Sand 32.3 19.0 13.3 0.70
Loamy sand 37.0 26.9 10.1 0.38
Loamy fine sand 32.6 27.2 54 0.20
Sandy loam 30.9 18.6 12.3 0.66
Fine sandy loam 36.6 23.5 13.1 0.56
Very fine sandy loam 32.7 21.0 11.7 0.56
Loam 30.0 14.4 15.6 1.08
Silt loam 31.3 11.4 19.9 1.74
Sandy clay loam 253 13.4 11.9 0.89
Clay loam 25.7 13.0 12.7 0.98
Silty clay loam 233 8.4 14.9 1.77
Sandy clay 19.4 11.6 7.8 0.67
Silty clay 214 9.1 12:3 1.34
Clay 18.8 7.3 11.5 1.58

4§ = total porosity — 15 bar moisture %.

bG = total porosity — 0.3 bar moisture %.

CAWC = S — G.

Source: Adapted from C. B. England, “Land Capability: A Hydrologic Response Unit in

Agricultural Watersheds,” U.S. Department of Agriculture, ARS 41-172, Sept. 1970.
After H. N. Holtan et al.*®

The GI curves have been developed by expressing experimental data on daily
evapotranspiration for several crops (Fig. 5.5) as a percentage of the annual maximal
daily rate (Fig. 5.6). Equation 5.26 is used by the Agricultural Research Service in its
USDAHL-74 model of watershed hydrology in combination with G/ curves to calcu-
late daily evapotranspiration. Representative values for S, G, and AWC are given in
Table 5.5.

5.7 ESTIMATING EVAPOTRANSPIRATION

Transpiration is an important component in the hydrologic budget of vegetated areas,
but it is a difficult quantity to measure because of its dependence on phytological
variables. It is a function of the number and types of plants, soil moisture and soil
type, season, temperature, and average annual precipitation. As noted previously,
evaporation and transpiration are commonly estimated in their combined evapotran-
spiration form.

If the precipitation and net runoff for an area are known, and estimates of
groundwater flow and storage can be made, rough estimates of ET can be had using
the basic hydrologic equation, Eq. 1.1. A more sophisticated approach developed by
Penman follows." It is representative of the methods most often used.
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CHAPTER 5 EVAPORATION AND TRANSPIRATION

The Penman Method

Both the energy budget and mass transport methods for estimating evapotranspiration
(ET) have limitations due to the difficulties encountered in estimating parameters and
in making other required assumptions. To circumvent some of these problems, Pen-
man developed a method to combine the mass transport and energy budget theories.
This widely used method is one of the more reliable approaches to estimating E7 rates
using climatic data.'*'>*%

The Penman equation is of the form of Eq. 5.18; it is theoretically based and
shows that ET is directly related to the quantity of radiative energy gained by the
exposed surface. In its simplified form, the Penman equation is'’

AH + 0.27E
BT = =K% 027 (5.27)
where A = the slope of the saturated vapor pressure curve of air at absolute
temperature (mm Hg/°F)
H = the daily heat budget at the surface (estimate of net radiation) (mm/day)
E = daily evaporation (mm)
ET = the evapotranspiration or consumptive use for a given period (mm/day)

The variables E and H are calculated using the following equations:
E = 0.35(e, — e,)(1 + 0.0098u,) (5.28)

where e, = the saturation vapor pressure at mean air temperature (mm Hg)

e, = the saturation vapor pressure at mean dew point (actual vapor pressure
in the air) (mm Hg)
u, = the mean wind speed at 2 m above the ground (mi/day)

The equation used to determine the daily heat budget at the surface, H, is
H = R(1 — r)(0.18 + 0.55S) — B(0.56 — 0.092¢5°)(0.10 + 0.90S) (5.29)

where R = the mean monthly extraterrestrial radiation (mm H,O evaporated per
day)
r = the estimated percentage of reflecting surface
B = a temperature-dependent coefficient
S = the estimated ratio of actual duration of bright sunshine to maximum
possible duration of bright sunshine.

The empirical reflective coefficient r is a function of the time of year, the calmness of
the water surface, wind velocity, and water quality. Typical ranges for r are 0.05 to
0.12.*' Values of e, and A can be obtained from Figs. 5.7 and 5.8, those for R and B
can be obtained from Tables 5.6 and 5.7. The use of Penman’s equation requires a
knowledge of vapor pressures, sunshine duration, net radiation, wind speed, and mean
temperature. Unfortunately, regular measurements of these parameters are often un-
available at sites of concern and they must be estimated. Another complication is
making a reduction in the value of ET when the calculations are for vegetated surfaces.
While results of experiments to quantify reduction factors have not completely re-
solved the problem, there is evidence that the annual reduction factor is close to
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Figure 5.7 Relation between temperature and Figure 5.8 Temperature versus A relation for use
saturated vapor pressure. with the Penman equation. (After Criddle.?®)

unity.*>~** Thus, unless there is evidence to support another value, it appears that using
a value of 1 for the reduction coefficient may give satisfactory results for surfaces
having varied vegetal covers. Accordingly, any estimate of free water evaporation
could be used to estimate ET, providing it is modified by an appropriate reduction
coefficient.

EXAMPLE 54

Using the Penman Method, Eqgs. 5.27 to 5.29, estimate ET, given the following data:
temperature at water surface = 20 degrees C, temperature of air = 30 degrees C,
relative humidity = 40 percent, wind velocity = 2 mph (48 mi/day), the month is
June at latitude 30 degrees north, r is given as 0.07, and S is found to be 0.75.

Solution

1. Given the data for temperature, the values of e, and e, can be determined.
Using Fig. 5.7 or Appendix Table A.2, the saturated vapor pressures are
found to be 17.53 and 31.83 mm Hg respectively. Thus e, = 31.83, and for
a relative humidity of 40 percent, e, = 31.83 X 0.4 = 12.73.

Then, using Eq. 5.28,

E = 0.35(31.83 — 12.73)(1 + 0.0098 X 48)
E = 9.83 mm/day
2. The value of A is found using Fig. 5.8; for the given latitude and month, R
is obtained from Table 5.6; and B is gotten from Table 5.7 for a temperature
of 30°C. The values found are A = 1.0, R = 16.5, and B = 17.01.
Then, using Eq. 5.29,
H = 16.5(1 — 0.07)(0.18 + 0.55 X 0.75)
— 17.01(0.56 — 0.092 X 12.73%%)(0.10 + 0.90 X 0.75)
H = 6.04 mm/day
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