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Preface

Preface to the Second German Edition

In addition to the correction of typographical errors, the text has been
materially changed in three places. The derivation of Stirling’s formula in
Chapter 2, §4, now follows the method of Stieltjes in a more systematic
way. The proof of Picard’s little theorem in Chapter 10, §2, is carried out
following an idea of H. Konig. Finally, in Chapter 11, §4, an inaccuracy has
been corrected in the proof of Szegd's theorem.

Oberwolfach, 3 October 1994 Reinhold Remmert

Preface to the First German Edition

Wer sich mit einer Wissenschaft bekannt machen
will, darf nicht nur nach den reifen Friichten greifen
— er mufl sich darum bekiimmern, wie und wo sie
gewachsen sind. (Whoever wants to get to know a
science shouldn’t just grab the ripe fruit — he must
also pay attention to how and where it grew.)

— J. C. Poggendorf

Presentation of function theory with vigorous connections to historical de-
velopment and related disciplines: This is also the leitmotif of this second
volume. It is intended that the reader experience function theory personally
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and participate in the work of the creative mathematician. Of course, the
scaffolding used to build cathedrals cannot always be erected afterwards;
but a textbook need not follow Gauss, who said that once a good building
is completed its scaffolding should no longer be seen.! Sometimes even the
framework of a smoothly plastered house should be exposed.

The edifice of function theory was built by Abel, Cauchy, Jacobi, Rie-
mann, and Weierstrass. Many others made important and beautiful con-
tributions; not only the work of the kings should be portrayed, but also
the life of the nobles and the citizenry in the kingdoms. For this reason,
the bibliographies became quite extensive. But this seems a small price to
pay. “Man kann der studierenden Jugend keinen gréSeren Dienst erweisen
als wenn man sie zweckmafig anleitet, sich durch das Studium der Quellen
mit den Fortschritten der Wissenschaft bekannt zu machen.” (One can ren-
der young students no greater service than by suitably directing them to
familiarize themselves with the advances of science through study of the
sources.) (letter from Weierstrass to Casorati, 21 December 1868)

Unlike the first volume, this one contains numerous glimpses of the func-
tion theory of several complex variables. It should be emphasized how in-
dependent this discipline has become of the classical function theory from

which it sprang.
~ In citing references, I endeavored — as in the first volume — to give
primarily original works. Once again I ask indulgence if this was not always
successful. The search for the first appearance of a new idea that quickly
becomes mathematical folklore is often difficult. The Xenion is well known:

Allegire der Erste nur falsch, da schreiben ihm zwanzig
Immer den Irrthum nach, ohne den Text zu besehn. 2

The selection of material is conservative. The Weierstrass product theo-
rem, Mittag-Leffler’s theorem, the Riemann mapping theorem, and Runge’s
approximation theory are central. In addition to these required topics, the
reader will find

Eisenstein’s proof of Euler’s product formula for the sine;

Wielandt’s uniqueness theorem for the gamma function;

|

an intensive discussion of Stirling’s formula;

Iss’sa’s theorem;

1Cf. W. Sartorius von Waltershausen: Gaufl zum Geddchtnis, Hirzel, Leipzig
1856; reprinted by Martin Sandig oHG, Wiesbaden 1965, p. 82.

2 Just let the first one come up with a wrong reference, twenty others will copy
his error without ever consulting the text. [The translator is grateful to Mr. Ingo
Seidler for his help in translating this couplet.]
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— Besse’s proof that all domains in C are domains of holomorphy;

— Wedderburn’s lemma and the ideal theory of rings of holomorphic
functions;

— Estermann’s proofs of the overconvergence theorem and Bloch'’s the-
orem;

— a holomorphic imbedding of the unit disc in C?;

— Gauss’s expert opinion of November 1851 on Riemann’s dissertation.

An effort was made to keep the presentation concise. One worries, how-
ever:

Weifl uns der Leser auch fiir unsre Kiirze Dank?
Wohl kaum? Denn Kiirze ward durch Vielheit leider! lang. 3

Oberwolfach, 3 October 1994 Reinhold Remmert

31s the reader even grateful for our brevity? Hardly? For brevity, through
abundance, alas! turned long.
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Gratias ago

It is impossible here to thank by name all those who gave me valuable ad-
vice. I would like to mention Messrs. R. B. Burckel, J. Elstrodt, D. Gaier,
W. Kaup, M. Koecher, K. Lamotke, K.-J. Ramspott, and P. Ullrich, who
gave their critical opinions. I must also mention the Volkswagen Founda-
tion, which supported the first work on this book through an academic
stipend in the winter semester 1982-83.

Thanks are also due to Mrs. S. Terveer and Mr. K. Schléter. They gave
valuable help in the preparatory work and eliminated many flaws in the
text. They both went through the last version critically and meticulously,
proofread it, and compiled the indices.

Advice to the reader. Parts A, B, and C are to a large extent mutually
independent. A reference 3.4.2 means Subsection 2 in Section 4 of Chapter
3. The chapter number is omitted within a chapter, and the section num-
ber within a section. Cross-references to the volume Funktionentheorie I
refer to the third edition 1992; the Roman numeral I begins the reference,
e.g. 1.3.4.2.4 No later use will be made of material in small print; chapters,
sections and subsections marked by * can be skipped on a first reading.
Historical comments are usually given after the actual mathematics. Bibli-
ographies are arranged at the end of each chapter (occasionally at the end
of each section); page numbers, when given, refer to the editions listed.
Readers in search of the older literature may consult A. Gutzmer’s
German-language revision of G. Vivanti's Theorie der eindeutigen Funk-
tionen, Teubner 1906, in which 672 titles (through 1904) are collected.

‘[In this translation, references, still indicated by the Roman numeral I, are
to Theory of Complez Functions (Springer, 1991), the English translation by R.
B. Burckel of the second German edition of Funktionentheorie I. Trans.
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