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SERIES PREFACE

Ocean engineering is both old and new. It is old in that
man has concerned himself with specific problems in
the ocean. for thousands of years. Ship building,
prevention of beach erosion, and construction of
offshore structures are just a few of the specialties that
have been developed by engineers over the ages. Until
recently, however, these efforts tended to be restricted
to specific areas. Within the past decade an attempt has
been made to coordinate the activities of all technol-
ogists in ocean work, calling the entire field “ocean
engineering.” Here we have its newness.

Ocean Engineering: A Wiley Series has been created
to introduce engineers and scientists to the various
areas of ocean engineering. Books in this series are so
written as to enable engineers and scientists easily to

learn the fundamental principles and techniques of a
specialty other than their own. The books can also
serve as text books in advanced undergraduate and
introductory graduate courses. The topics to be cov-
ered in this series include ocean engineering wave
mechanics, marine corrosion, coastal engineering, dy-
namics of marine vehicles, offshore structures, and
geotechnical or seafloor engineering. We think that
this series-fills a great need in the literature of ocean
technology.

MicHageL E. McCorwmick, EpiTor
RAMESWAR BHATTACHARYYA, ASSOCIATE EDITOR
November 1972



PREFACE

This book is based on lecture notes prepared for
students of naval architecture, marine engineering,
and ocean engineering at the University of Michigan,
the U.S. Naval Academy, the Catholic University of
America, the University of Veracruz, Mexico, and the
Technical University at Guayaquil in Ecuador, over a
period of 10 years. It must be emphasized that the
literature presently available on the dynamics of
“marine vehicles is either more scientifically oriented or
scattered in various publlcatlons not easily accessible
to the common reader.

Primarily the book is intended as a textbook for a
first course in seakeeping, and emphasis is therefore
placed on the fundamentals of the subject matter.
Through the use of numerous figures, tables, and
solutions of exemplary problems, the aim is to help the
reader in understanding the basic principles and to
demonstrate the applicability of the methods outlined
in the text, since I am strongly of the opinion that any
treatise on an engineering discipline should consider its
primary goal to be oriented toward numerical results.
However, after the fundamentals have been grasped in
this way, the reader can go on to study the advanced
developments made in recent years for the purpose of
obtaining more scientific, if not more accurate, so-
lutions to actual problems.

The book is self contained; all essential material
related to the topics covered has been defined and
derived in the text. Also, the various chapters have

been arranged in such a way that the reader becomes .

acquainted with the various topics step by step, and I
followed strictly a course that would qualify the book
to beyself-taught with a basic knowledge of calculus.
The chapters have been arranged to present a sequence
of the physical phenomena necessary for a complete
understanding of dynamics of marine vehicles (e.g.,
simple waves, linearized motion, nonlinear motion,
coupled motion, the seaway, motions in an irregular

seaway), and each chapter can be well understood wiih
the knowledge acquired from studying the preceding
chapters.

Along with the sophisticated marine systems, the
design procedures for marine vehicles should not be

limited to stability,' structure, resistance, and pro-

pulsion; an integrated design criterion should also
include a study of motion and maneuvering. It is not
only desirable but also feasible to make accurate
quantitative predictions of the seakeeping and
maneuverability qualities of a marine vehicle when
geometrical descriptions of the hull form, the weight
distribution, and the necessary seaway conditions are
available. To do this requires a good understanding of
the fundamentals of the subject, the theories making it
possible to justify all the assumptions necessary for
quantitative answers, and a proper skill and ingenuity
in the complex design process. This book has been
written also with the.idea that a design engineer will
have ample opportunity to understand the basic
principles and to follow the proper steps to 1mprove
the hull form for his specific design.

I should like to express my indebtedness to all the
authors of the various publications listed in the
bibliography. They have provided me with the nec-
essary knowledge to write this book. Specifically I
express my sincere gratitude to Rear Admiral R. W.
King, USN (Ret.), and Professor M. E. McCormick of
the U.S. Naval Academy, without whose encourage-
ment and initiative this book could not have been
written. Acknowledgments are due also to the students
who have taken my course at the University of
Michigan, the U.S. Naval Academy, the Catholic
University of America, and the University of Veracruz
in Mexico; especially Mr. D. Goldstein of the Naval
Ship Engineering Center, Mr. F. Agdern of the Naval
Facility Engineering Command, Ensign M. C. Tracy,
and Sefior R. Hernandez Valdes of the University of
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Veracruz helped me throughout in the preparation of
the manuscript.

I'am grateful to Mrs. 1. E. Johnson for superb typing,
and the necessary secretarial help from the very
beginning. Particular thanks go also to Mrs. D. V.
Christenseni and Mrs, V. E. Stafford for their expert
editorial assistance.
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Chapter

INTRODUCTION

Ships are built for the purpose of carrying men,
material, and/or weapons upon the sea. In order to
accomplish its mission, a ship must possess several
- basic characteristics. It must float in a stable upright
position, move with sufficient speed, be able to
maneuver at sea and in restricted waters, and be
strong enough to withstand the rigors of heavy
. weather and wave impact. To design a ship with
these features, the naval architect must have an
understanding of ship dynamics. _

With a simple knowledge of hydrostatics a naval
architect can produce a ship that will float upright
in calm waters. However, ships rarely sail in calm
water. Waves, which are the main source of ship
motions in a seaway, affect the performance of a ship
considerably and the success of a ship design depends
ultimately on its performance in a seaway. Unfor-
tunately, however, the prediction of ship motions,
resistance and power, and structural loads in an
actual seaway is such a complex problem that the
naval architect is usually forced to select the hull
_form and ship dimensions on the basis of calm water
performance without much consideration of the sea
and weather conditions prevailing over the route
on which the ship is to operate.

To study the effects of waves on ship dynamics
it is logical that we should also understand ocean
waves, which are not regular but highly complex
in nature. Statistical means have been adopted to
study this irregular behavior of the seaway and also
to obtain ship motion characteristics.

It is not the motion characteristics per se that
are important in the study of ship behavior in a
seaway but rather the dynamic effects caused by the

" One

motions themselves. These effects are the shipping of
green water on the deck, the emergence of the forefoot
leading to slamming, and the effects of acceleration
due to pitch, heave, or roll, or all combined.

When the relative movement of the bow and local
wave surface become too great, water is shipped
over the forecastle. The shipping of green water
can have a very detrimental effect if watertight inte-
grity is not maintained. Many of the electrical systems
can be so damaged that they may not be functional.
The freezing of green water on contact can stop
a piece of apparatus on the weather decks from
functioning and may seriously impair the fighting
quality of a warship. Also, in an earlier stage, spray
is driven over the forward portion of the ship by the
wind. Both conditions (spray and green water) are
undesirable and can-be improved by increasing the
freeboard.

Under some conditions, the pressures - exerted
by the water on a ship’s hull may become excessive
and slamming may take place. Slamming is charac-
terized by a sudden change in the vertical acceleration
of the ship, followed by a vibration of the hull girder
in its natural frequency. The conditions leading
to slamming are high relative velocity between the
ship and the water surface, shallow draft, and small
deadrise.. . -

Repeated slams will not only damage the ship
structure and other components, but also will have a -
considerable effect on the personnel operating the
ship. This is especially important in respect to the
satisfactory operation of naval vessels, the mission of
which is to act as a floating platform for weapon
systems. The platform, therefore, should be as stable
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as possible. The area between 10 and 25% of the
length from the bow is the one most likely to suffer
high pressures leading to damage.

In the design of ships, speed is an important factor.
However, there is a loss cf speed while a vessel is
under way in a sea, because of the increase in motion
resistance and the. loss of propeller efficiency. This
results in higher fuel consumption and thereby limits
the cruising range. The heavier the seaway, the
greater is the 10ss of speed. To overcome this loss
it is often necessary to improve the resistance and
propulsion characteristics of the vessel, as well as
to design the machinery plant for adequate reserve
power. Although model tests can predict with reason-
able accuracy the still water resistance and propulsion
performance of a ship, their determination in a
seaway is still the subject of research. The maximum
speed that can be attained by a ship is governed,
not necessarily by the available power, but mostly
by the accelerations experienced in a seaway.

To reduce the dynamic effects, various means of
motion stabilization have been adopted. Bilge keels,
damping tanks, and fins are a few examples. Know-
ledge of the phenomenon, of resonance between
regular waves and the rolling motion has led to the
use of successful roll damping devices, but not much
progress toward dampening the pitching motion
adefjuately has yet been made because of the large
forces involved. Consideration of motion stabilization
is particularly important for passenger ships, as
well as many typ.s of naval vessels. Structural failure
in severe seas is not infrequent even with modern
technology.

The relativé importance of the various aspects
of ship performance in a seaway varies from design
to design, depending on what the operators require
of the ship. The following general items, must be
investigated when designing seaworthy ships:

a. Excessive motions, which are undesirable since
they may impair stability and cause discomfort
to the crew and passengers. Also, in warships most
weapon systems require a stable platform for proper
“ functioning.

-b. Additional stresses ‘caused by the ship’s bending
or by wave impacts in a seaway.

c. Inertial forces causing damage to equipment,
armament structures, and so forth.

d. Shipping and spraying of green water, causing
equipment breakdown and degradation of hability.
e. Slamming.

f. Speed reduction and the conditions under which

the propeller will start racing, thereby overloading

the propelling machinery and hence increasing the
fuel consumption per mile or dropping off the
cruising range.

g. Ship-handling quality.

The various problems encountered in regard to
ship motions may be investigated in four different
ways:

1. Analytically, that is, on a theoretical basis.

2. Experimentaily, by means of model tests in
controlled environments.

3. Empirically, through statistical observations.

4. Directly, as with trials of ships after they are
built.

Both theoretical and experimental studies help
the designers to determine the influences of various
ship featdrés on seakeeping characteristics, know-
ledge that is extremely valuable in designing a ship.
Therefore one of the most important studies in naval

architecture is the investigation of ship performance

in rough water. Both merchant and naval vessels
must maintain a high degree of seakeeping quality
in many different types of weather and still attain
their mission—the merchant ship from the commer-
cial point of view, and the naval vessel with regard to
optimum operational -ability. For the purpose of
design cne should be able to estimate the dynamic
forces to which a ship may be subjected and the
motions that result therefrom. Theoretical studies,
model results, and full-scale data are all necessary
to provide reliable design criteria.

In recent years, research on ship motions has
made considerable advances in the area of theoretical
development, as well as in experimental facilities.
However, no quantitative index has yet been found
to compare the seakeeping qualities of ships, as'is
possible in comparing the resistance or propulsion
characteristics of one hull form with another by means
of simple coefficients., :

The mtroductlon of advanced marine vehlcles
such as planing crafts, hydrofoil boats, and air
cushion vehicles has necessitated further studies
in seakeeping in order to achieve the maximum
results from these special vehicles. Intensive investi-
gations are now under way to determine expéri-
mentally the effects of parametric variations in
motions, bottom pressures, and power requirements
on models of planing boats, surface effect ships
(SESs), and so on. In addition, scale effect studies
on high-performance vessels are being looked into
to correlate test results from models of different
scales and full-scale trials.
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Therefore, the responsibility of a ship designer -

includes the development of technology for measur-
ing, predicting, and improving ‘the various qualities
that govern ship dynamics. This also includes the
application of this technology-to specific designs, the
~ identification of design faults, and the correction and
improvement of such designs. The specifics will
depend on the particular design, but it is essential
that the designer have some means of judging the
expected performance.

In theoretical investigations the problem of deter-
mining the motions of a ship consists of deriving
simple analytical expressions for the surface of the
seaway and determining the ship motions for such a
seaway. Theoretical studies can offer the following:

a. General information regarding the most relevant
characteristics of the behavior of a ship in a seaway.
_ b. A prediction of the motion of a ship in any given
seaway.

" ¢. An insight into the acceptable values of motions,
accelerations, and so on.

d. A knowledge of the average performance to be
expected, including stability and resistance.

e. Basic ideas regarding motjon stabilization and
ways to achieve it.

f. Guidelines for model tests and full-scale trials.

However, since ship motion is rather complex,
it cannot be completely treated by analytical means
alone; therefore model experimentation and ship
trials are carried out in order to predict ship perfor-
mance. Sophisticated methods of model tests have
been developed in various experimental facilities
throughout the world and extensive ship trials
are conducted in order to correlate model and ship
results. This is especially important for naval ships.
However, before new ships, including hydrofoils,
SESs, and hovercrafts, can be employed effectively
in their design environment (open sea and at speed),
the human habitability factor must be addressed.ﬁ‘-

It is to a basic and fundamental discussion of
such means that the-tater chapters are devoted.



Chapter

Two

SIMPLE HARMONIC MOTION

2.1 INTRODUCTION

Motions of a body can be described as either trans-
lational or rotational. These motions, according
to Newton’s law, take place continuously in.one
direction only unless disturbed by.some external
force. The direction of motion can also be alter-
nating; that is, motion can progress in one direction
and then reverse after an interval of time. Such a
motion 1s known as oscillatory. An oscillatory
motion is common in nature, and, since it was
originally studied in relation to music, is also called
a harmonic motion. Since most harmonic motions
are rather complicated, .a simplified treatment is
adopted here using some simple oscillatory motions,
which are then called simple harmonic motions.

In the case of simple harmonic motion, when a
body is displaced from its equilibrium position,
a force that is inherent in the body tends to bring it
back to its original equilibrium position. This force,
known as the restoring force, is directly proportional
to the displacement of the body from its equilibrium
position. When displaced from fts equilibrium posi-
tion, the body moves back toward this position
with an acceleration under the action of the restoring
force, that is, the body moves faster and faster as it
nears its equilibrium position. However, as the body
comes closer to this position, the restoring force
decreases and the acceleration toward the equilibrium
position diminishes. When the body finally reaches
its equilibrium position, the restoring force and
acceleration vanish, but by then the body has attained
its maximum velocity. If there is no force to stop
the body at its equilibrium position, it will move
past this position in the opposite direction. Again

4

a. restoring force acting toward the equilibrium
position comes into play, but in the opposite direc-
tion. As the body continues to move further, the
displacement and the restoring force, as well as the
acceleration, increase until the velocity becomes
zero, that is, the body reaches its maximum displace-
ment from its equilibrium position. Now, under the
influence of the restoring force, the body gains
velocity continuously until it.reaches the equilibrium
position and moves past this position again.

If there is no resistance or damping during this
oscillatory motion, the body will oscillate inde-
finitely, and the maximum displacement of the
body on either side of its equilibrium position will
remain constant. The time taken to reach from one
extreme point to the one on tht other side and back
is known as the period of the motion.

In 3 simple harmonic motion, displacement, velo-
city, and acceleration change constantly at every
instant. This kind of motion can be represented
by another kind of motion ¥Ath a constant speed:
motion around -a circle.

This topic is discussed in the following section.

2.2 EQUATIONS OF SIMPLE HARMONIC
MOTION

If a point is considered to be moving along the
circumference of a circle with uniform speed, the
motion of the projection of the point on the diameter
of the circle is defined as the simple harmonic motion.

In Fig. 2,1 let us suppose that point P is moving

"along the cifcumference of a circle having a radius

z,. If P has a constant angular velocity of @ radians
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Figure 2.1  Definition of simple harmonic motion.

per unit time, P’ is the projection of P on the diameter
of the circle zz’. While P rotates along the cireum-
ference of the circle, P’ moves from z to z’ and again
back to z. The motion of P’ is known as simple
harmonic motion. Now

Displacement of P’ from 0 = OP' = z=z,cos ot (2.1)

Velocity of P’ = Z—i = — z,w sin wt (2.2)
d’z
Acceleration of P’ = R w? cos wt (2.3

Figure 2.2 shows displacement, velocity, and
acceleration. The amplitude of P, its maximum
displacement from the middle position, is z,. The

. perlod of motion, the time required for P’ to reach
z' from z and move back to z again, is the same as
the time required for P to make a complete rotation:

T = 2rz, » @ :
wz,
- gt 1
Characteristic frequency = 5
; 2 )
Angular frequency = o = ?7[

5.00

2.50
1.25
0

Note the following:

a. The maximum velocity occurs when v = z,w sin wt
is maximum, that is, when sin wt = + 1. This occurs
when P’ is at the midpoint from its two extreme
positions, or when the body is at its equilibrium
position.

b. The maximum acceleration occurs when the
expression cos wt = + 1, that is, when the body is
at its extreme position from the posmon of equili-
brium.

c. As already mentioned, the restoring force in a -
simple harmonic motion is directly proportional
to the displacement of the body from its position
of equilibrium, that is, '

f=cz

where f is the restoring force, ¢ is a constant, and
z is the displacement of the body from O, which is
the position of equilibrium. When the body is at its
equilibrium position, z is zero and so is the restoring
force f. When the body is at its extreme position (i.e.,
z=1z,), the restoring force is maximum and equal
tocz,.

Therefore, as the body moves from its position
of equilibrium to one extremity, it acts against a
force that is zero at first and then increases gradually .
to a maximum value of cz,. Then from (2.3) we see that
the maximum acceleration is — w?z. It is noted that
the amplitude z, does not come into this equation, or
into the equation for period T = 2xn/w. Therefore one
can say that, since w? does not refer to any particular
circle, a whole set of simple harmonic motions,
even ones of different amplitudes, will have the same
period.

Hence the simple harmomc can be redefined as
follows:

“Simple harmonic motion is*motion in a straight
line if at each instant the acceleration is directly
proportional to its distance from a fixed reference
point in the straight line and acts t'oyard that point.”

Displacement (z)

Velocity (z)

<125
-2.50

-5.00

> Wt

m
Acceleration (z)

Figure 2.2  Displacement, velocity, and acceleration of a simple harmonic motion.
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Also,

“Whatever be the amplitude of motion, the period
is determined only by the acceleration at unit dis-
placement [i.e., putting z=1 in (2.3)].”

The preceding discussion has dealt with simple
harmonic motion in a straight line, that is, oscillatory
translational motion along the diameter zz’' of the
circle in Fig. 2.1, where the body oscillates in a
straight line, but oscillatory rotational motion, that
is, the motion of a body moving back and forth
along a circular arc, can also be simple harmonic
motion. In that case the restoring force is the restoring
moment, the angular acceleration is proportional to
the angular displacement and oppositely directed,
the angular motion is simple harmonic, and again
the period is independent of the angular amplitude.

Example 2.1

. A simple harmonic motion z=z, cos wt has an

‘amplitude of 5 ft and a circular frequency of 0.5 rad/
sec. Show with the help of a diagram how the displace-
ment, velocity, and acceleration of this simple
harmonic motion should vary with time.

Solution
Angular velocity: @ = 0.5 rad/sec (given)
Amplitude of motion: z, = 5 ft (given)

Displacement: z = z, cos wt = 5 cos 0.5¢

Velocity:% = — wz,sin wt = — 2.5sin 0.5¢
=
Acceleration‘:F = — w?z,cos wt = — 1.25 cos 0.5¢
See Fig. 2.2.

When the body begins to move away from its
equilibrium position, it possesses only kinetic energy.
Since it 'loses velocity as it goes further from the
neutral position, the kinetic energy is decreasing
and potential energy is taking its place. When the
body comes to a complete stop at its extreme position,
all the energy the body possesses is potential.

The kinetic energy of an oscillating body, directly
as a function of time, is expressed as

= L2
Ey=;mv

=im?z?sin o) from(22) (24)

‘where m is the mass of the body, v is its velocity, and
. 2, is its amplitude or maximum displacement.

A s
® M |
2 I
- |
@ [
5= I
% I
I
oc
I
I
! 1 >
0 B C N 3 =13,
Figure 2.3  Restoring force as a function of displacement.:

The potential energy of a body, as a function of
time (or displacement), is calculated by equating
the work done against the restoring force F, expressed
as

F=—ma
=—m(
—mwz

f‘rom 2.3) .
«(2.5)

As stated before, the restormg force is directly
proportional to the displacement of the body from
the reference point or the equilibrium position as
shown in Fig. 2.3. In this figure the shaded area
represents the work done or the increase of potential
energy corresponding to the small change in displace-
ment from B to C. With the same argument the
increase in potential energy of a body from its
equilibrium position to any displacement z (ie.,
ON = z) is given by the area of the triangle OMN or

w?z, cos wt)

1

p=2
= Yzmw?’z
Since z = z, cos wt,
E,=3mw’z?

(2.6)
Adding (2.4) and (2.6), we obtain the total energy:

= imw?z2 cos® wt

Eg + E, = imw?z?
or
2n%mz?

X 72 A 2.7)
where T is the pegiod of oscillation. We see from
(2.7) that the sum of the kinetic and potential energies
remains constant with time (or displacement); that
is, Fig. 24 shows the distribution of both kinetic
and potential energies while the total energy remains
constant. We can also see from (2.7) that the total
energy of a simple harmonic motion is directly
proportional to the mass and the square of the
amplitude and inversely proportional to the square
of the period (or directly proportional to the square
of the frequency).
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272 mzi Total energy
¥ i

Kinetic energy v
| : $/ ; |

Potential energy

Y -

0 Z =132

Figure 2.4 Distribution of kinetic and potential energies.

Phase Difference

We saw in Fig. 2.1 that, if point P starts rotating
in the clockwise direction from position z, the time
t when P is at z equals zero and the displacement
of OP for the simple harmonic motion is given as

OP' =z = 0P cos wt
=z,C0s wt

However, if P starts its motion from Q, as in Fig. 2.5,
then the time ¢t when P is at Q equals zero and

OP’' =z = 0P cos(wt + &)
=z, cos(wt + &}

Figure 2.6 shows the two curves drawn on the
same axes for comparison, where

We notice that the two curves have the same shape
and size but are moved or shifted in relation to each
other in the direction of the 6-axis. Both functions
have the same amplitude and the same period in 6,
but they are different in phase. In any general case
~we say that, if z =z cos(f + ¢), the constant angle ¢
is called the phase angle of the function with respect
to z= z, cos 0. Generally, the range of ¢ is restricted,
so that —n<e<n. The phase shift is —e&, which
is the condition for the argument of the cosine function
to be zero.

Yy ~

Cwt

5

Figure 2.5 Phase difference in a simple harmonic motion.

Note: If we compare z, cos 360 and z, cos(30 + n/4),
the phase angle is /4. Howevet, this is not the shift
of the graph to the left from the graph of z, cos 30. The
left shift is given by 30 +n/4=0 or 0= —(n/12).
If & is positive (as_in Fig. 2.6, ¢ = /3), the function
z,cos(0 +¢) is said to lead the function z,cos?®,
where the corresponding zeros of z, cos(€ + ¢) occur
before or to the left of the zeros of z,cos 6. If ¢ is
negative, z, cos(0 + ¢) lags the function z,cos 0. =

With the above explanation, it is said that z,sin
0 =z,cos(0 — n/2) lags z,cos@ by =m/2, and z,cos
0 = z,sin(0 + n/2) leads z,sin @ by m/2. Note also
that a lead by n has the same effect as a lag by n. The
following conclusions can be drawn from Fig. 2.6:

a. A change in the amplitude leaves the period in 6
and the phase angle unchanged.

b. A change in the period in 0 leaves the amplitude
and the phase angle unchanged.

c. A change in the phase angle leaves the amplitude
and the period in 6 unchanged.

The amplitude, the period in 6, and the phase
angle are independent properties of the functions,.

Figure 2.6 Two simple harmonic motions with a phase difference of ¢
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27

3
(b)

_(a)

te— — 15° = phase shift (case b)

1v l i/é-sme

I ]

~PF

-2+

U
2n
3

Figure 2.7  Phase shift.

whereas the phase shift in 8 is dependent on both the
phase angle and the period in 6 but is independent
of the amplitude.

Example 2.2

Find the amplitude, the period, the phase angle,

and the phase shift relative to sin 8 of:

a. 2.5sin 3(0 + n/4).
b. 4sin(36 + 45°). .

Solution (see also Fig. 2.7.):
a. 2.5sin 3(6 + g) Amplitude = 2.5

Phase Shift: 30 + 3 g =0

1 |
T | T 3 thr
4|2 2 Al
—1k be — 45° = phase shift (case a)
I

S
Il
|

or

L

2n
Period = —
erio 3

Phase angle: 36 + %j—t

Therefore, phase angle = %’t

b. 4sin(360 + 45°) Amplitude = 4

Phase shift: 30 +45°=0

45°
0:—-
or 3
= —15°
2n
Period = —
eriod : 3

Phase angle = 45°

In Fig. 2.8 the harmonic curves are shown as each
having the same amplitude and period but a different
origin of time. In Fig. 2.8a time is measured when
point P’ is in a position z=z,. In Fig. 2.8¢ time is
measured when P’ is in the equilibrium position
(e, z=0); here, as in Fig. 2.8b, time is measured-
when t, units of time have elapsed after P’ has passed '
the extreme position z = z, in the clockwise direction,
or

&= wt,
: e T
T w 2

.As can be seen from Fig. 2.8, all three diagrams
describe identical curves except that they are shifted
in relation to each other along the abscissa, that is,
the t-axis. As said before, this relative shift is known as
the phase shift, and when this is multiplied by the
angular velocity @ (which is the same as the circular
frequency), the phase angle ¢, in terms of radians, is
obtained. Note again that the period T is the same

A~

Figure 2.8

>0/\ 1> [j\
t .

t

\/ t

- T -

T e ll:* 1
(c) " &)
o = ';T

Identical harmonic motions shifted in relation to each other.
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in all three diagrams in Fig. 2.8. If this is not the
case, the curves cannot be compared to each other.
Therefore the phase angle is applicable only if
harmonic motions of the same frequency are consi-
dered. Thus, if we compare (2.1) and (2.2), we have

Z=1z,C08 wt

L z= —wz,sinwt

n
= wz,Cos (wt + 5)

This means that the velocity of P’ is a harmonic
function with the same frequency as displacement.
As shown in Fig. 2.2, the amplitude of the acceleration
is w? times larger than that of the displacement and
the phase angle is 180°, whereas the frequency in
all three cases remains the same.

Example 2.3

The simple harmonic motion of a body is expressed
as

z=2,C0s Wt

and the period - T =2 sec. If the body is held fixed
for 4 time t =0.5 sec and then is released, and if
the time is measured from the same starting point
as before, find the expression for the continuing
harmonic motion.

Solution:
As explained, the phase angle ¢ is described as

&= wt,
2n 2n n
=7;t0=7x0.5=5

Therefore the simple harmonic motion will be
T
z= zacos(a)t + —2-)

2.3 VECTOR REPRESENTATION

As mentioned earlier, the simple harmonic motion
of any oscillating body can be represented by the
projection of the end point of a radial vector on the
diameter of the circle (see Fig. 2.9). Any one of the
projections of P will represent the harmonic motion.
If, for example, t =0 when P is at z and P rotates

in the clockwise direction, the vertical projection :

will be z,coswt and the horizontal one will be
z, sin wt. The latter may be represented by the vertical

~ Figure 2.10

zA

%5 8in Wi

Figure 2.9

Vector representation of simple harmonic mo-
tion. '

vector with a phase angle of — (n/2) since
3 T
z,sinwt = z,cos(wt - 5)

For example, from (2.1), (2.2), and (2.3) the rotating
vectors for displacement, velocity, and acceleration
may be described as in Fig. 2.10. ,

If we differentiate the displacement vector z,,
we see that the velocity vector length is multiplied
by w and advances by an angle of 90°. The vector
representation is useful if we are to add and subtract
the simple harmonic motions with phase differences.
The resultant vector will represent the resultant
motion both in amplitude and in phase.

wt Zg \
- Displacement
w2 z vector

Acceleration Velocity vector

vector

Wz

Vector representation of displacement, ve-
locity, and acceleration.

2.4 ADDITION OF SIMPLE HARMONIC
MOTIONS

When two simple harmonic motions have the same
period, they can differ only in amplitude and in
phase.
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%y

-

Figure 2.11 - Vector addition of two simple harmonic mo-
tions.

Let 4, and A4, be the amplitudes of two simple
harmonic motions represented by OP, and OP,,
plotted from a fixed point O (see Fig. 2.11). Let us
suppose that the second motion, OP;, is leading
OP, and the phase angle between the two is o. Let
us also suppose that each motion is rotating in a
clockwise direction with a constant angular velocity
w = 2n/T, where T is the period for both motions.

The projections of P, and P, on the reference
line (Oz) are P} and P, respectively. They describe
the' simple harmonic motions to be added. Both
P} and P, have the same period T, while their ampli-
tudes are a, and a,, respectively. The second motion
leads the first one by the phase angle d. '

Both of the simple harmonic motions are on the
same straight line Oz and about the same point O,
the resultant displacement at any time being the
sum of two individual displacements z, and z,.

In Fig. 2.11, z, and z, are represented by OP} and

oP,.

If we now draw the parallelogram OP,0P,,
from the parallelogram law ‘we have OP’ = z, which
is the sum of z, and z, since OP = OP| + OP;.
The amplitude of the resultant motion, a, is then
.represented by the length OP, since OP' is the pro-
jection of the rotating vector OP on the reference
line: '

We can also obtain the same result analytically
instead of graphically. Let the combined motion
be a cos(wt + ¢). But

z =2, + 2, =a, cos wt + a, cos(wt + J)
since

a, cos(wt + 8) = a, cos d cos wt — a, sin J sin wt

Therefore .

combined motion = (a, + a, cos ) cos wt
— a, sin J sin wt
acos(wt + €)
= acos £cos wt

— asin ¢sin wt -

or _
acose=a, +a,cosd (2.8)
and

~asing=a,sind . (2.9)

Squaring (2.8) and (2.9) and adding them, we have
a® = (a, + a, cos 8)* + (a,sin 5)*
= aj + a5 cos? § + 2a,a, cos § + a2 sin?6
=a}+ a3+ 2a,a,cosd

or
a=./a} + a2 +2a,a,cos & (2.10)
Also, dividing (2.9) by (2.8) gives
a=tan—1(—“ﬁ5—) @.11)
' a, +a,cosd /.

where the resultant motion leads the lagging compo-
nent (represented by OP,) by the phase angle &.

It is, therefore, shown that the graphical represen-
tation of this case is very suitable for determining
the amplitude as well as the phase angle of the
resultant motion. In addition, we have learned that
the resultant motion of two harmonic motions is
also harmonic and has the same frequency as the
individual motions. Note, however, that the resultant
motion is not a harmonic motion if the frequencies
of the individual motions are not the same.

‘Example 2.4

A resultant motion is obtained by superimposing
two displacements, namely, '

z, =8sinwt

z,=17 cos(wt - ;)

Find the amplitude of the resultant motion and its
phase angle in relation to the displacement of the
first motion.

z, = the lagging component
= 8 sin wt

TR i 11 4 / T
.=8ccl)s(§—wt)—8.cos(mt-—§)



