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Preface

Research in mathematics can be viewed as the search for some hidden keys that open
numerous scientific locks. In this book, we seek key techniques and ideas to unify
various computations with matrices and polynomials, which are the oldest subjects in
mathematics and computational mathematics and the backbone of modern computa-
tions in the sciences, engineering, and communication.

Four millennia ago Sumerians wrote the solutions of polynomial equations on clay
tablets. Later the ancient Egyptians did so on papyrus scrolls [B40], [Bo68]. Likewise,
the solution of linear systems of equations, the most popular matrix operation, can also
be traced back to ancient times.

How frequently do these subjects enter our life? Much more frequently than one
commonly suspects. For instance, every time we turn on our radio, TV, or computer,
convolution vectors (polynomial products) are computed. Indeed, all modern commu-
nication relies on the computation of convolution and the related operations of dis-
crete Fourier, sine, and cosine transforms. Experts also know that most frequently the
practical solution of a scientific or engineering computational problem is achieved by
reduction to matrix computations.

Why are our two subjects put together? What do matrices and polynomials have in
common?

Mathematicians know that matrices and polynomials can be added and multiplied
together. Moreover, matrices endowed with certain structures (for instance, matrices
whose entries are invariant in their shifts in the diagonal or antidiagonal directions)
share many more common features with polynomials. Some basic operations with
polynomials have an equivalent interpretation in terms of operations with structured
matrices. A number of examples of this duality is covered in the book.

What is the impact of observing the correlation between matrices and polynomi-
als? Besides the pleasure of having a unified view of two seemingly distinct subject
areas, we obtain substantial improvement in modern computations. Structured matri-
ces often appear in computational applications, in many cases along with polynomial
computations. As a demonstration, in Sections 3.7-3.9 we cover a simple application
of structured matrices to loss-resilient encoding/decoding and their well-known corre-
lation to some celebrated problems of rational interpolation and approximation.
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Applied linear algebra versus computer algebra

What is amazing — in view of the close ties between polynomial and structured matrix
computations — is that applied mathematicians largely study the two subjects quite
independently. The community of applied linear algebra, which studies computations
with matrices and benefits from these studies, interacts very little with the computer
algebra community which studies computations with polynomials and benefits from
those studies. They constitute two distinct groups of people with distinct traditions,
principles, and methods of working.

Matrix computation (applied linear algebra) people rely on numerical computa-
tion with rounding to a fixed precision. This enables faster computation using a small
amount of computer memory. One must, however, take special care about rounding
errors. The propagation of such errors in computational processes should be restricted
to keep the output meaningful. This requirement has led to the advancement of error
and perturbation analysis, approximation theory, and various techniques of algorithm
design that stabilize computations numerically.

Computer algebra people are successfully exploiting and exploring an alternative
path: error-free symbolic computations. This path requires more computer time and
memory and thus is more expensive than numerical computation. The main advan-
tage of symbolic computations is having completely reliable output. Various advanced
mathematical tools have been developed to support this direction. Typical important
examples are the transition to computations in finite fields, the Chinese remainder al-
gorithm, and the p-adic Newton—Hensel lifting algorithms. Computations with poly-
nomials make up much of computer algebra.

Polynomial and structured matrix computations combined

One of our goals is to reveal the correlation between computations with polynomials
and structured matrices, continuing the line of the survey paper [P92a] and the book
[BP94]. The expected impact includes better insight into both subjects and the unifica-
tion of successful techniques and algorithms developed separately for each.

We study this correlation and its impact quite systematically in Chapters 2 and 3.
This enables us to cover a substantial part of computer algebra using structured matri-
ces. We observe close ties between structured matrices and the Nevanlinna—Pick and
Nehari problems of rational interpolation and approximation. These celebrated alge-
braic problems allow numerical solution via reduction to matrix computations. Thus
they may serve as a natural bridge between polynomial and matrix computations.

The displacement rank approach

Apart from unifying the study of matrices and polynomials, we focus on the design
of effective algorithms unified over various classes of structured matrices. Our basic
tool is the displacement rank approach to computations with structured matrices. The
idea is to represent these matrices by their displacements, that is, the images of spe-
cial displacement operators applied to the matrices. The displacements are defined by
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only small number of parameters, and the matrices can be recovered easily from their
displacements.

The displacement rank approach consists of compression and decompression stages
(the back and forth transition between matrices and their displacements) with dramat-
ically simplified computations in-between (memory and time intensive computations
with matrices are replaced with dramatically simplified operations with their displace-
ments).

Some history and the displacement transformation approach
to unification

The displacement rank approach to computations with structured matrices became cel-
ebrated after the publication of the seminal paper [KKM?79], where some basic under-
lying results were presented for the class of Toeplitz-like matrices. Subsequent exten-
sions to other classes of structured matrices followed [HR84], [GKK86], [GKKL87].
This was first done separately for each type of matrix structure, but in the paper [P90]
we pointed out that the four most important classes of structured matrices, having struc-
tures of Toeplitz, Hankel, Vandermonde, and Cauchy types, are closely related to each
other via their associated displacement operators.

For each of these four classes of matrices, we showed sample transformations into
the three other classes by transforming the associated displacement operators and dis-
placements. We proposed using such techniques systematically as a means of ex-
tending any efficient algorithm, developed for one of these four classes, to the other
three classes. Later the approach proved to be effective for practical computations,
such as the direct and iterative solution of Toeplitz/Hankel-like linear systems of equa-
tions (via the transformation of the displacement operators associated with their coeffi-
cients matrices to the ones of Cauchy type) [H95], [GKO95], [H96], [KO96], [HBI7],
[G97], [HB98], [Oa], numerical polynomial interpolation and multipoint evaluation
[PLST93], [PZHY97], [PACLS98], [PACPS98], and algebraic decoding [0S99/0S00,
Section 6]. In Chapters 4 and 5, we show applications of this approach for avoiding
singularities in matrix computations and for accelerating numerical rational interpola-
tion (Nevanlinna—Pick and Nehari problems). The list of applications of our approach
is far from exhausted. The value of the method was widely recognized but its best
known historical account in [G98] omits the source paper [P90]. Recent rediscovery of
the method and techniques in [OS99/00], Section 6, caused even more confusion.

Symbolic operator approach to unification

An alternative and complementary method for unifying matrix structure is the symbolic
operator approach. This approach also unifies numerical and algebraic algorithms.
The matrix is associated with a largely unspecified displacement operator, and the high
level description of the algorithms covers operations with displacements assuming their
cited basic properties. This is the main framework for our presentation of some highly
effective algorithms. The algorithms are completly specifiedwhen a structured input
matrix, an associated displacement operator, and the rules of algebraic and numerical
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implementation are fixed. The specification is not our primary goal in this book, but
we give some comments. We frequently combine the symbolic operator approach with
displacement transformation techniques; we specify the results on the matrix structures.
We also comment on the impact of our algorithms on the problems of computer algebra
and numerical rational interpolation and approximation.

Unified superfast algorithms

How large is the gain of the displacement rank approach, based on shifting from matri-
ces to their displacements?

An n x n structured matrix M has n? entries, all of which may be distinct, but its
displacement may have small rank r, say equal to 1, 2 or 3, even where n is very large.
Then the matrix can be represented with many fewer from r»n to 2rn parameters.

Similarly, the solution of a structured linear system of n equations, Mx = b, can
also be accelerated dramatically. Classical Gaussian elimination uses the order of n’
operations but has fast versions for structured matrices, running in time of the order of
n?, where numerical stabilization with pivoting is also incorporated [H95], [GKO95],
[G97]. In Chapters 5-7, we cover unified superfast algorithms, which support the
running time bound of the order of r2n log® n and which we present in a unified way
for various matrix structures. The latter time bound is optimal up to the (small) factor
of r log2 n.

Two technically distinct classes of superfast algorithms are shown to complement
each other. Divide-and-conquer algorithms are covered in Chapter 5, and Newton’s
iteration in Chapters 6 and 7. In both cases the algorithms can be applied numerically,
with rounding to a fixed finite precision, and symbolically (algebraically), with infinite
precision. We do not develop these implementations but give some comments and
refer the reader to http://comet.lehman.cuny.edu/vpan/newton for a numerical version
of Newton’s iteration for structured matrices.

The presented unified superfast algorithms are immediately extended to many im-
portant computational problems having ties to structured matrices. We cover some
applications to computer algebra and the Nevanlinna—Pick and Nehari problems of nu-
merical rational computations. The correlation to structured matrices enables better
insight into both areas and an improvement of numerical implementation of known so-
lution algorithms. For the Nevanlinna—Pick and Nehari problems, their reduction to
computations with structured matrices is the only known way to yield a superfast and
therefore nearly optimal (rather than just fast) solution, which is unified for several
variations of these problems.

Our presentation

Our primary intended readership consists of researchers and algorithm designers in
the fields of computations with structured matrices, computer algebra, and numerical
rational interpolation, as well as advanced graduate students who study these fields. On
the other hand, the presentation in the book is elementary (except for several results that
we reproduced with pointers to source papers or books), and we only assume superficial
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knowledge of some fundamentals from linear algebra. This should make the book
accessible to a wide readership, including graduate students and new researchers who
wish to enter the main disciplines of our study: computations with structured matrices
and polynomials. Examples, tables, figures, exercises of various levels of difficulty,
and sample pseudocodes in Section 2.15 should facilitate their efforts.

Actually, the author was quite attracted by a chance to present advanced hot topics
and even new results in a structured form. Most of the material is covered with proofs,
derivations, and technical details, but we completely avoid long proofs. Wherever
we omit them, we supply the relevant bibliography in the Notes at the end of each
chapter. In particular, this applies to Newton’s numerical iteration (Chapter 6) and the
reduction of Nevanlinna-Pick and Nehari problems to matrix computations (Sections
3.8 and 3.9). Other topics are much more self-contained. We hope that the inclusion
of details and some well-known definitions and basic results will not turn off more
advanced readers who may just skip the elementary introductory parts of the book.
Similarly, many readers may focus on the description of the main algorithms and skip
some details of their analysis and the complexity estimates.

In the Notes, we cite the most relevant related works, reflecting also the earlier
non-unified versions of the presented algorithms. The reader should be able to trace
the most imporant related works from the cited bibliography. We apologize for any
omission, which is inavoidable because of the huge and rapidly growing number of
publications on computations with structured matrices.

To keep our presentation unified, we omit the eigenproblem for structured matrices
and do not study some important matrix classes (such as multilevel matrices, banded
matrices, infinite but finitely generated structured matrices, and block banded block
Toeplitz matrices with Toeplitz blocks), whose treatment relies on distinct techniques.
We give only brief comments on the important issues of numerical stability and par-
allel implementation of the presented algorithms, sending the reader to the relevant
bibliography, and we leave the topic of data structures to more introductory texts.

Chapters 2 and 3 and the first sections of Chapter 7 overlap with some expository
material on polynomial and Toeplitz matrix computations in the book [BP94], but we
extend this material substantially, present it more clearly and more systematically, and
show the correlation between computations with polynomials and structured matrices
more extensively. Otherwise, most of our presentation is from journals and proceed-
ings articles. Furthermore, several new unpublished results are included. Chapters 4-7
unify and extend scanty preceding works mostly devoted to some specified classes of
structured matrices. Chapter 5 has a very preliminary exposition in the Proceedings
paper [OP98] and a more developed Proceedings version in [PO0]. The Proceedings
papers [PRO1], [PRWO00], and [PO1] are the predecessors of the first five sections of
Chapter 6; they have no substantial overlap with the last six sections of the chapter.
Chapter 7 overlaps with [P92] and [POOb]. In the last three chapters and also in Sec-
tions 3.6, 3.7, and 4.4, we present several novel techniques and algorithms and yield
new record estimates for the arithmetic and Boolean complexity of some fundamen-
tal computations with structured matrices as well as for the cited problems of rational
interpolation and approximation.
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Selective reading

Despite our goal of a unified study, we structure the book to encourage selective reading
of chapters and even sections. This makes the book accessible to graduate student, yet
less boring for experts with specialized interests. Guiding graphs, titles, and figures
help the selection. In particular, we give the following guiding graph for selective
reading of chapters.

Guiding Graph for Selective Reading of Chapters

Chapter 1 Chapter 2
Chapter 3
Chapter 4
Chapter 5 Chapter 6 Chapter 7

Let us also give some guiding comments (also see Section 1.10). In Chapters 2, 3,
and 7, we assume an interest on the part of the readers in computer algebra problems.
Passing through Chapters 2 and 3, these readers can be motivated to study the superfast
algorithms of Chapter 5 but may decide to skip Chapter 6. On the contrary, readers who
come from applied linear algebra and have no particular interest in computer algebra
may focus on Chapters 4-6 and skip Chapters 2 and 3, except for some basic facts,
the estimates collected in Table 1.2, and the definitions reproduced in Section 4.1.
Furthermore, either Chapters 5 or 6 can be read independently of one another. In the
beginning of Chapters 3—7 we display graphs for selective reading within each of these
chapters. We propose that all sections of Chapters 1 and 2 be read in succession.

Chapter 1 outlines our main subjects and should serve as an introduction to the
book. Technically, however, it can be skipped, except for some basic results, examples,
and definitions in Sections 1.3—-1.5, for which we give pointers whenever we use them.

Those readers whose interests are restricted to the tangential Nevanlinna—Pick and
matrix Nehari problems of rational interpolation and approximation or to the loss-
resilient encoding/decoding may start their reading with the respective sections of
Chapter 3 and then if necessary may follow pointers and cross references to other parts
of the book.
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Summary of the book
Let us briefly summarize what we cover:

1. Unification of studies in the areas of:

(a) computations with structured matrices and polynomials,
(b) computer algebra and numerical linear algebra,
(c) matrix structures of various classes,

(d) structured matrices and Nevanlinna—Pick and Nehari problems.
2. Fundamental techniques:

(a) displacement rank approach,
(b) algorithmic transformation techniques,
(c) divide-and-conquer method and recursive matrix factorization,

(d) Newton’s iteration in numerical and algebraic versions.

3. Superfast and memory efficient algorithms for several fundamental problems,
including new algorithms and new derivations and analysis of some known algo-
rithms for

(a) structured matrix computations,
(b) numerical rational interpolation and approximation,
(c) loss-resilient encoding/decoding,

(d) other areas of computer algebra.

Several unpublished results are included, in particular in Chapters 5-7 and in Sec-
tions 3.6, 4.4, and 4.6.2. (See more details in the Notes following each chapter).

The unification approach reflects the personal taste of the author whose primary
interests include numerical linear algebra, polynomial computations, and algorithm
analysis. He tried to focus on the key ideas and techniques of these areas. He believes,
however, that the unification approach is beneficial for the subjects covered, since it
provides for a deeper understanding of the power and the deficiencies of the solution
algorithms.

This book should invite researchers (and perhaps some novices) to explore some
subjects further. In particular, the following areas seem to be widely open to new
research and/or implementation of recent algorithms:

e applications of the displacement transformation approach, including randomized
transformations,

e analysis and implementation of the Newton-Structured Iteration and its gener-
alizations and variations, including scaled versions, extensions to other residual
correction methods, and particularly heuristic variations,
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e complexity analysis and numerical analysis of the algorithms of Chapters 4 and
5 and their implementation and applications to specific classes of structured ma-
trices,

e claboration and implementation of the presented superfast algorithms for the so-
lution of specific problems of encoding/decoding, computer algebra, and rational
interpolation and approximation,

e parallel implementation of the presented algorithms (see [BP94, Chapter 4] and
[P96], [POOb]).

Taking into account scientific and applied interest in topics covered, this book
should fill a substantial void in the market. On the other hand, we hope that the el-
ementary presentation will attract new people to the subjects and will help unify the
efforts of researchers in several covered areas.
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Glossary of mathematical

notation

Notation
F
C
R
M e "
M = ('"i,j)i.j=0

v € F¥xl

k—1

V= (vi)i=0

S=1{s1,0..98}

€;
I =1,
0,0
D(v), diag(v)

T = (i) jmo

m—1,n—1

Explanation

an arbitary field

the field of complex numbers

the field of real numbers

an m x n matrix with entries from field IF
m x n matrix with the (i, j)-th entry m; ;

a k-dimensional column vector with coordinates from
filed F

k-dimensional vector with the i-th coordinate v;, i =
0,...,k—1

the set of k elements sy, ..., sx (not necessarily dis-
tinct)

1 x k block matrix with blocks Wy, ..., Wi

n x k matrix with the columns wy, ..., wg, where n is

the dimension of the column vectors
the transpose of a matrix W, the transpose of a vector
v

the Hermitian (conjugate) transpose of a matrix, the
Hermitian (conjugate) transpose of a vector

the i-th coordinate vector
the n x n identity matrix
null matrices

the diagonal matrix with a vector v defining its diago-
nal
an n x n Toeplitz matrix
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Z,Zy an n x n matrix with the (i, j)-thentry 1 fori = j + 1
and O for all other pairs i, j, the unit lower triangular
Toeplitz matrix
Yoo z+2z"
Y11 Z+ZT+e0eg+e,,_1e,{_l
Zy Z + fege!_,, the unit f-circulant matrix
n—1
Z(v), Zp(v) Z v,-Zi , the lower triangular Toeplitz matrix with the
=0
first column v
n—1
Zr(v) Z v; Z’f, the f-circulant matrix with the first column
i=0
v
H = (hi+j)7,1—'io an n x n Hankel matrix
J (en—1,...,€p0), the n x n unit Hankel matrix, the re-
) flection matrix
V(t) = (ti'/ ):.";;0 the n x n Vandermonde matrix with the second column
C(s, t) = (A_il,j )Zj_'io the n x n Cauchy matrix defined by two vectors s and
K(M,v,k) (Miv)f.‘;(; , the n x k Krylov matrix with columns M'v,
i=0,...,k—1
L linear operator
A, B operator matrices
G, H generator matrices, GHT = L(M)
Va.B a Sylvester type displacement operator
Va.p(M) AM — M B, Sylvester type displacement of M
Aa.B a Stein type displacement operator
Aa (M) M — AM B, Stein type displacement of M
w, Wy a primitive n-th root of 1
w the vector (o' );:01 of the n-th roots of 1
Q (@ );’7;0, the scaled matrix of the DFT
n—1
DFT(p) (Z p,-wf,k )Z;(l), the discrete Fourier transform of a
o
vector p
DFT, computation of DFT(p)

p(x) mod u(x)

p(x) modulo u(x), the remainder of the division of
univariate polynomials p(x) by u(x)



