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PREFACE

Since the emergence of molecular imaging over 30 years ago, it has arguably become one of the most rapidly growing
fields of scientific research, spanning multiple disciplines such as medicine, pharmacology, chemistry, cell biology, and
biomedical engineering. In contrast to conventional biomedical imaging by microscopy, where investigations are generally
performed on excised tissues, molecular imaging includes in vivo techniques that provide visual and quantitative
information on normal or pathological processes at the cellular or sub-cellular level. Most pertinently, these techniques
have been designed to be noninvasive to the subject body. As a result, molecular imaging has revolutionised how one can
monitor and characterise complex, dynamically changing molecular pathways within the living organisms, thus spurring
its rapid development.

Nowadays, molecular imaging via Positron Emission Tomography (PET), Single-Photon Emission Computed Tomography
(SPECT), Computed Tomography (CT) or Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI),
Optical Imaging, and Ultrasound (US) have already been regularly applied in the clinical environment as diagnostic tools.
Each of these imaging modalities brings its own advantages and disadvantages, utilising a specific wavelength of
electromagnetic or sound wave for excitation or detection. Due to their specific properties, imaging targets can range from
cell surface markers or genes and their related products to a particular cellular or pathological process. Once the imaging
target is identified, an appropriate imaging contrast agent is needed to be selected. This agent, mostly in the form of a small
molecule, protein, or antibody, can bind to or enter the target environment upon injection into the subject body. Traditionally,
imaging contrast agents are likely to be specific to one particular imaging mode, but in recent years, multimodality probes
have been increasingly common as scientists strive for improvements in efficiency. For the first time in the area, we present
a book dedicated to the chemistry of molecular imaging—other excellent texts and monographs describe the principles of
biomedical imaging, focusing on the physics and mathematics behind the techniques.

Consisting of 16 chapters, this book is designed to provide (i) an in-depth discussion on the chemistry of various imaging
contrast agents, probes, and biomarkers being applied in different imaging modalities and (ii) the methodology in which the
agent becomes bound to its intended target and how it acts within in vitro and in vivo environments.

Following a general introduction to molecular imaging and the various imaging modes in Chapter 1, Chapter 2 lays out
the principles with which imaging contrast agents achieve their labelling or bioconjugated status. In Chapters 3 to 7,
radioactive isotopes employed in the nuclear medicine imaging techniques PET or SPECT are discussed, while agents for
MRI are examined in Chapters 8 to 10. This is followed by the discussion of organic molecules, metal complexes, and
nanoparticles being utilised in optical imaging, comprising Chapters 11 to 14. Chapter 15 details the applications of
microbubbles in ultrasound, MRI, and more, and finally, the last two chapters of the book investigate the nature and properties
of multimodality imaging contrast agents. Throughout this book, we hope to construct a comprehensive picture of imaging
chemistry, with examples and illustrations, thus affording the readers a thorough understanding of the art of imaging contrast
agent design.

ix



PREFACE

We thank all the authors for the preparation of their individual contributions that really make this book, and their patience
with the project. We hope that readers do enjoy the book and that it will prove useful and stimulating for their own research,
helping to reinforce this burgeoning and exciting area of scientific discovery.

London and Hong Kong, June 2014 NicHOLAS J. LONG
WING-TAK WONG
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AN INTRODUCTION TO MOLECULAR IMAGING

GA-LA1I LAW AND WING-TAK WONG

Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong SAR, China

1.1 INTRODUCTION

The aim of this book is to introduce the concepts of different imaging techniques that are employed for diagnostics and
therapy and the role that chemistry has played in their evolution. The book provides a general introduction to the area of
molecular imaging, giving an account of the role of molecular design and its importance in modern-day techniques, with an
in-depth introduction of some of the probes and methodologies employed. This first chapter introduces the different types
of imaging modalities currently at the forefront of imaging and illustrates some basic concepts underlying these techniques.
It acts as a simplified background to set the scene for the following chapters, which will discuss the chemical properties of
molecules and the role they play in different imaging modalities. For the interested readers, other textbooks are referenced
that will provide more detailed information regarding the different techniques reviewed.

In life everything is incessantly changing. There is constant evolution in life sciences, evolution in the way problems
arise, and evolution in the way they are solved. Diagnostics and therapy are both important, but as Einstein said, “intellec-
tuals solve problems, geniuses prevent them.” The key challenge still remains to unravel the hidden knowledge within life
sciences, which constantly challenges us with new diseases and mechanistic mutation of biological systems and pathways
[1]. Again, as stated by Einstein, “once we accept our limits, we go beyond them.”

Molecular imaging aims to detect and monitor mechanistic processes in cells, tissues, or living organisms with the use of
instruments and contrast mechanisms without perturbing their living system. Ultimately, it is a field that utilises molecular
building blocks to bring solutions to problems by specialised imaging techniques that have matured into a large integrated
field enveloped within various branches of science (Figure 1.1) [2]. In the area of modern-day imaging where technology is
at its pinnacle, molecular design still holds a dominant role in the forefront of molecular imaging.

In the past, developments in contrast agents, probes, and dyes have brought about an era of creativity where new
techniques, materials, and designs have flourished to form a concrete foundation resulting in today’s achievements in
diagnosis and therapy (Figure 1.2). The construction of better chemical molecules will continue to help us develop a
more comprehensive picture of learning about life science. Figure 1.3 depicts a timeline in the development of the
field [1-3].

The Chemistry of Molecular Imaging, First Edition. Edited by Nicholas Long and Wing-Tak Wong.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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FIGURE 1.1 Types of multidisciplinary fields related to molecular imaging.
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FIGURE 1.2 Diagram showing the links in the design rationale of imaging agents.



WHAT IS POSITRON EMISSION TOMOGRAPHY (PET)? 3

Imaging-timeline

1895:- Physicist Wilhelm Conrad Rontgen publishes the first medical image-the first X-ray picture, showing the skeletal
X-ray  composition of his wife’s left hand. He was awarded the Nobel prize in 1901
1903:- Nobel prize awarded for discovery of radioactive elements-Marie curie, Pierre Curie as well as Antoine Henri Becquerel

1931:- Ernst Ruska and Max Kroll construct an electron microscope, the first instrument to provide better
Light/electron definition than a light microscope. (In 1986 Ruska is awarded half of the Nobel prize in physics.)

microscope 1932:- Frits Zernike invented the phase-constrast microscope that allowed for the study of colourless and transparent
biological materials such as cells for which he won the Nobel prize in physics in 1953.

<

<

1950s:- Prof. Ian Donald develops practical technology and applications for ultrasound as a diagnostic tool in obstetrics
Ultrasound and gynecology. This displays images on a screen of tissues or organs formed by the echoes of inaudible sound waves at

/NMR high frequencies.
1946:- Physicists Edward Purcell and Felix Bloch discover NMR-awarded Nobel prize in 1952

1962:- First positron emission tomography transverse section instrument.
PET  1974:- Michael Phelps develops the first positron emission tomography camera and the first whole-body system for human and
animal studies.

MRI and computer calculations of tomography. (2003-he shares the Nobel prize in physiology or medicine with Peter Mansfiels for their
pioneering MRI work.)

1972:- Engineer Godfrey Hounsfield and Allan Cormack develop the computerised axial tomography scanner, or CAT scan. The device
CT combines many X-ray images to generate cross-sectional views as well as three-dimentional images of internal organs and structures.
1979:- They were awarded thr Nobel prize in physiology or medicine for their development of computer assisted tomography-CT scan
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Advancement in multimodal imaging

FIGURE 1.3 An approximate timeline showing the development of the different imaging modalities [1-3].

Fluorodeoxyglucose

H OH
H

—0
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H I18F
H OH

FIGURE 1.4 "FDG, a typical contrast agent used in PET.
1.2 WHAT IS POSITRON EMISSION TOMOGRAPHY (PET)?

Positron Emission Tomography (PET) is a nuclear medicine tomographic modality and one of the most sensitive methods
for quantitative measurement of physiologic processes in vivo [4]. This technique utilises positron-emitting radionuclides
and requires the use of radiotracers that decay and produce two 511keV y-rays resulting from the annihilation of a positron and
an electron. One of the most commonly used molecules is '*F-labelled fluorodeoxyglucose ('*FDG), which has radioactive
fluorine and is readily taken up by tumours (Figure 1.4) [5].

1.2.1 Basic Principles

In PET, a neutron-deficient isotope causes positron annihilation to produce two 511keV y-rays, which are simultaneously emitted
when a positron from a nuclear disintegration annihilates in tissue. PET imaging, unlike MRI, ultrasound, and optical imaging,
does not require any external sources for probing or excitation: instead, the source is generated from radioisotopes and emitted from
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but not transmitted through an object/patient, as in CT imaging [4-7]. Radionuclides are incorporated as part of a small metaboli-
cally active molecule to generate radiotracers such as 'SFDG, which are then intravenously injected into patients at trace dosage for
PET imaging. "*FDG is a favourable radiotracer because it is inhibited from metabolic degradation before it decays due to the
fluorine at the 2 position in the molecule. Upon decay, the fluorine is converted into '*O. There is generally a short period of time
before accumulation of radiotracers into the targeted organs or tissues that are being examined, so it is important for radiotracers to
have a suitable half-life—some commonly used radionuclei have very short half-lives. Some common radionuclides used in PET
are 11-C (half-life ~20min), 13-N (~10min), 15-O (~2min) and 18-F (~110min). These are produced by a cyclotron, whereas
82-Rb (765), which is used in clinical cardiac PET, is produced by a generator [8-9].

When a radioisotope undergoes positron emission decay (positive f-decay), it emits a positron that travels through the
tissue for a short distance (~<2mm) whilst decelerating by the loss of its kinetic energy until it collides with an electron. This
results in back-to-back annihilation of y-ray photons, which move in opposite directions and are emitted nearly 180 degrees
apart before being detected by scintillators and a photomultiplier tube. This type of coincidence is a true coincidence event; to
detect this, the detectors are designed like a ring that surrounds the patient during the scanning procedure. Several parallel
rings form the complete detection panel of the PET system in a cylindrical geometry (Figure 1.5).

PET has relatively high sensitivity in detecting molecular species (10" — 10"'2M), even though not all annihilation photons
are used for image reconstruction because not all coincidences are true coincidences. A coincidence event is assigned to a line
of response where the two relevant detectors are joined (detectors opposite to each other); this allows for positional information
to be located from the detected radiation without any physical collimators. This is known as electronic collimation. There are
four types of coincidence events in PET: true, scattered, random, and multiple (Figure 1.6). Only true coincidence, which is
the simultaneous detection of two emissions from a single annihilation event, is useful. No other events are detected within
this coincidence time-window.

True

Detectory\\ coincidence

¥ Detector

Positron

annihilates

with electron

Two 511 photons are
emitted simultaneously
in opposite direction

Pet scanner
Typical configuration: )
Emission

Whole-body (patient port around 60 cm and FOV around 15 cm) positron

Scintillator crystals coupled to photomultiplier Unstable nucleus

Cylindrical geometry

Other configurations for

24-32 rings of detector crystals : s o,
special-purpose applications:

Hundreds of crystal/ring Brain imaging
LORS PET CT Animal PET
( ) Mammography
1
Other
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(

FIGURE 1.5 Typical configuration of a PET scanner.




