Prmuples of
Programming
Languages (POPL)

ik

Principles of
Programming Languages

Dr. Rajiv Chopra
Asst. Professor
CSE/NT
GTBIT (GGSIPU)
New Delhi

ik

I.K. International Publishing House Pvt. Ltd.

NEW DELHI

Published by

LK. International Publishing House Pvt. Ltd.
S-25, Green Park Extension

Uphaar Cinema Market

New Delhi—110 016 (India)

E-mail: info@ikinternational.com

Website: www.ikbooks.com

ISBN: 978-93-84588-01-4
© 2015 LK. International Publishing House Pvt. Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or any means: electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission from the publisher.

Published by Krishan Makhijani for I.K. International Publishing House Pvt. Ltd., S-25, Green
Park Extension, Uphaar Cinema Market, New Delhi—110 016 and Printed by Rekha Printers Pvt.
Ltd., Okhla Industrial Area, Phase II, New Delhi—-110 020

Principles of
Programming Languages

NI EE, 75 E 58 #EPDFIG Vi 1A : www. ertongbook. com

PREFACE

We all marvel at the beautiful rose. The rose, with all its beauty and grandeur. But seldom we
pause and thank the gardener who patiently matured and watered it. The book, I have written is
the fruit of such unseen hands.

‘Principles of Programming Languages includes the entire gamut of the principles, rules and
guidelines that must be followed both by the new programmer and an experienced programmer
in order to deliver a good quality software.

Writing programs is an art. This artifact starts from scratch and then prepares you to understand
what a program is and how it should be developed? Believe me while writing of this book, I
imagined myself to be a student who wants to learn basic programming skills. So, you could be
a very good programmer if you learn these techniques of programming.

First of all I would like to thanks the Almighty GOD who showered his blessings to write
such a manuscript. I also acknowledge my parents, my wife and my twin babies for their loving
and understanding support given to me during the writing of this book.

Dr. Rajiv Chopra

CONTENTS

Preface

1. Computer Preliminaries

1.1
1.2
1.3
1.4
1.5
1.6

Introduction

Introduction to Problem Solving

Overview of Computers and Computer Languages
Computer Hardware and Software

Programming Languages

Structured Programming

2. Introduction to DOS

2.1
22
2.3
24
2.5

Introduction

Setting up DOS

Some Basic DOS Commands
WATFOR-77 Commands
Function Keys

3. FORTRAN Fundamentals

3.1
32
33
34
35
3.6
3.7
3.8

Introduction

Typing FORTRAN Statements
FORTRAN-77 Character Set

Constants and Variables

Variables

Rule for Naming Variables

Precedence Rule for Arithmetic Operations
Arithmetic Assignment Statement

4. Numerical Input/Output

4.1
4.2
43
44
4.5
4.6

Introduction

Unformatted Input/Output
Formatted Input/Output
Input Field Specifications
Output Field Specifications
Repetition Factor

23

23
23
24
25
26
28
30
31

42

42
42
45
47
51
57

viii

Contents

5. Transfer of Control

5.l
5.2
5.3
54
5.5
5.6
5.7

Introduction

Unconditional Transfer of Control
Conditional Transfer of Control

Double Alternatives

Block IF Statement for Multiple Alternatives
Arithmetic IF

Computed GO TO Statement

6. Looping

6.1
6.2
6.3

DO Loops
While-DO ENDWHILE Statement
FOR Statement

7. Arrays

7.1
7.2
7.3

Introduction
Subscripted Variables
Implied DO Loop

8. Function and Subroutines

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Introduction

Function Subprograms

The Function Invocation (Calling Function Subprogram)
Comparison of Functions and Subroutines

The Common Statement

Multiple Entries in Subprograms

Multiple Returns from Subroutines

Equivalence Statement: (Sharing Memory)

The External and Intrinsic Statement

Block Data

9. Files and File Handling

9.1
9.2
9.3
9.4
9.5

Introduction

File Processing Statements
Rewind Statement
Backspace Statement
Endfile Statement

Index

68

68
68
70
76
78
79
82

102

102
108
109

115

115
115
128

150

150
151
152
154
155
159
160
162
163
165

180

180
181
186
187
188

215

1

[COMPUTER PRELIMINARIES

1.1 INTRODUCTION

Computers are extensively used to solve variegated problems from various walks of life, like
research, defence, hospitals, banks, business, education, industries to name a few. The types of
problems are innumerable and each problem requires a different computational procedure to
solve it. Though the computational procedure (algorithm) differs from problem to problem, still
we can develop a general procedure that can be adopted to solve any of the problems. Below,
we discuss this general procedure to solve the problems.

1.2 INTRODUCTION TO PROBLEM SOLVING

Problem solving on computer requires a thorough analysis of the problem. Once the problem
is analyzed, developing a solution to the problem becomes much easier. Usually, the following
general steps are followed to solve problems, using the computer:

Defining the problem

Analysis and design of the problem
Algorithm development

Flow charting

Pseudocode

Code or program

Compiling, debugging and testing

SN s B

1. Defining the Problem

Making a clear, precise and accurate statement about the problem is essential. Any error in the
problem definition leads to erroneous solutions.

2. Analysis and Design of the Problem

Problem analysis is essential to develop an algorithm. This step determines the variables involved
in the problem and identifies the relationship between them. Once this is over, the precise
specifications of variables and input/output data can be decided. Then, the analysis of problem
proceeds for developing and analyzing of the model. This model is test run manually using the

2 Principles of Programming Languages

actual input conforming to the data specifications decided earlier. If the results are satisfactory,
then the design part moves on to the design of layout for the output, i.e., how an output should
appear in the printouts or in display. This may also include output media, like line printer, computer
monitor, number of copies to be printed, etc.

NOTE: All variables and 1/O data in a problem require a precise detailing about them, called
specifications. Some such specifications include:

variable types, such as INTEGER, REAL, COMPLEX, etc.

number of digits and decimal places, required to represent a numerical value accurately.
+ve or —ve value (signed or unsigned value)

range of values, etc.

b O =

3. Algorithm Development

An algorithm is a procedure for solving a problem. It consists of a finite set of precisely defined and
ordered steps for solving the problem. There may be different algorithms for the same problem.
The programmer should choose the one which is efficient, accurate and clear. An algorithm is
considered efficient if it takes less computational time, consumes less computer memory and has
response time. The accuracy can be decided by the programmer at the time of problem design.
The problem is said to be clear if it is easy to understand.

For complicated problems, algorithm development becomes more complex. The common
approach for such problems is top-down design using modular programming technique method.
In the third chapter, you will study little more about modular programming technique, later when
you study FUNCTIONS and SUBROUTINES, you will gain complete understanding of the
technique.

The following example illustrates an algorithm which determines the GREATEST algebraic
element of the given three numbers. The logic of the algorithm is simple. The comments included
in the algorithm will help you in understanding the algorithm.

EXAMPLE 1.1 GREATEST algorithm: This algorithm determines the largest element of the
given three numbers and assigns the value to the new variable named ‘MAX”.

1. Read three numbers and assign them to A, B and C respectively.

2. MAX « A We initially assume that A is the largest element and its value is assigned to
another variable, called MAX.

3. IF MAX > B Then, MAX (i.e., A) is compared with B.

MAX « A else, if MAX is greater than B then MAX retains its earlier value, i.e., A.

MAX « B. Otherwise A is replaced by B.

Repeat step 3 with value of element C.

Assign the greatest of the three numbers to MAX.

Finished.

Exit.

SR S

Computer Preliminaries 3

In the above algorithm the symbol ‘<’ is used to indicate that the L.H.S. element is assigned
with the value of R.H.S. element. Below, we summarize the basic format conventions used in
the formulation of an algorithm.

I. Name of an algorithm: Every algorithm should be given an identifying name written in
capital letters (GREATEST in the above example).

I1. Introductory comment: The algorithm name is followed by a chief description of the task,
the algorithm performs and any other assumptions made. It also gives the names and types of
variables used in the algorithm.

lil. Steps: The algorithm consists of a sequence of numbered steps, describing the actions to
be taken or tasks to be performed. The statements in each step are executed in left to right order.

1V. Comments: Comments are enclosed within the parentheses immediately after each step. It
helps the reader in better understanding each of the individual steps.

Besides these basic format conversions, an algorithm consists of types statements and control
structures at various steps in the algorithm. These are listed below without any explanation.
These statements will become more clear when you actually start writing programs after learning
control structures.

Statements and Control Structures

1. Assignment statement

2. IF statement

3. Case statement

4. Repeat statement

5. Go to and exit loop statement

6. Exit statement

7. Variable names

8. Data structure

9. Arithmetic operations and expressions
10. Strings and string operations

11. Relations and relation operations

12. Logical operations and expressions
13. Input and output
14. Subalgorithms (functions and subroutines)

4. Flow Charting

As programs become more complex, a flow chart is most helpful in planning, designing and
structuring a program. A flow chart is a graphical representation of an algorithm which shows
the logical relationship between steps involved in it. With the help of lines and arrows, it also
shows the flow of control between the steps. Following guidelines can be followed for drawing
flow charts:

4 Principles of Programming Languages

1. The usual direction of flow is from left to write or top to bottom. Arrowhead is required
if this convention is not followed.

2. The first operation symbol is written at the top and the subsequent operation symbols are
written below the previous operation symbol.

3. The flow chart must be clear, neat and easy to follow.

4. A separate flow chart for a portion of a problem can be written if the situation demands.

5. Use a test data to cross-check the correctness of the flow chart.

Some of the symbols which are used in flow charting are given below.

SYMBOL USED FOR

() Start, stop, end or interrupt

General processing of expressions

Input or output operation

Decision

Off-line storage

Fig. 1.1 Flow chart symbols and their use

Computer Preliminaries

EXAMPLE 1.2 Draw a flow chart to find the sum of first 50 natural numbers.

Solution: The flow chart for summation of 50 natural numbers.

START

SUM « 0

SUM « SUM+N

PRINT N,
SUM

Assuming sum to be
zero in the beginning

Starting from zero value of N

Incrementing N by 1 each
time the loop is executed

Adding the incremented value
of N to the previous value of sum

Repeat the above two
steps until the value of
N becomes equal to 50

Print the final value of N and sum

STOP Stop execution of the program

Fig. 1.2 Flow chart for summation

5. Pseudocode

It is a semiformal description of each step to be carried out by the computer to solve a particular
problem. It is more readable and consists of English-like statements. It is a way of expressing an
algorithm to a problem. The pseudocode should include steps that are to be repeated and decision
that are to be taken. There is more than one ways of writing an algorithm in pseudocode. For
example, consider a simple problem of calculating and printing the sum (S) and average (AVE)

of a set of numbers (N). The basic steps in this calculation are:

1. Add all the given numbers in the set to find the sum (S).
2. Divide the sum (S) by total numbers (N) in the set to find the average (AVE).

3. Print the result.

The algorithm in pseudocode for this problem would be as follows.

5

6 Principles of Programming Languages

Sum(S) « 0

Count(N) « 0

For each number

Sum ¢« Sum(S) + number
Count(N) « Count + 1

End for

Average ¢« Sum(S)/Count(N)
Print the Average

Stop

Code or Program: 1t is a set of instructions to solve a problem in a computer language. Usually,
the program is stored as binary information in the computer memory. The processor is then able
to read, understand and perform the desired operations according to the instructions. This set of
instructions is usually called a Source Program or Source Code or simply a Program.

6. Compiling, Debugging and Testing

The process of translation of source program into machine language (code) is called compilation.
This is the first step in testing a program on the computer. During this process the computer
checks whenever the program is accurately written, if so, the program is translated into machine
language (code).

If there are any errors in the source program the process of compilation halts. These errors,
may be syntax errors, logical errors, etc., and are called bugs in the computer jargon. The process
of elimination of these bugs is called debugging. Syntax error is a mistake that occurs in the
formulation of an instruction to a computer. Usually, such errors occur due to mistakes in typing
the statements, like missing commas, spelling mistakes, etc. These errors have to be eliminated
for successful compilation and subsequent running of the program. The logical errors are due
to poor design of logic. These errors are hard to detect because the computer generally prints no
error message during the execution of the program.

Testing is a process to find any logical error in the program. This must be done systematically.
The program must give the correct answer to correct input. If there are any modules in the
program, they have to be tested individually for the correct input before put together to make a
complete program.

1.3 OVERVIEW OF COMPUTERS AND COMPUTER LANGUAGES

A block diagram of a computer is shown in Fig. 1.3. It consists of five major components,
interconnected as shown (Fig. 1.3).

[nput unit
Output unit
Memory unit
Control unit
Arithmetic unit

b R

Computer Preliminaries 7

Memory unit
Input unit Control unit Output unit
Example: Keyboard Example: Printer, plotter
card reader, etc. monitor, etc.
Arithmetic unit

Central Processing Unit (C.P.U.)

Fig. 1.3 Block diagram of a computer system

1. Input Unit: 1t consists of devices that permit a computer to receive information (data). It may
be card readers, magnetic tapes, keyboard, scanner, mouse, digitizer, etc.

2. Output Unit: 1t consists of devices that permit a computer to display the information (result).
It may be a printer, plotter, C.R.T. (monitor), etc.

3. Memory Unit: 1t is a device which stores the data input, the results or output of a program,
and the program itself. You can modify these data and retrieve them whenever required. It consists
of huge numbers of cells each capable of storing a unit information. To distinguish cells they all
numbered sequentially. These numbers are called addresses, but for user these addresses are
given by names and/or symbols.

4. Control Unit: 1t is a part of central processing unit. It controls and directs the operations
of the entire computer system. The control unit retrieves computer instructions in a proper
sequence, interprets each instruction and then directs the other parts of the computer system for
implementation. In simple words, it coordinates with the functions of all the units of a computer.

5. Arithmetic Unit: 1t is also a part of a central processing unit. It performs various arithmetic
operations like addition, subtration, multiplication, etc., and logic operations like operation of
values, etc.

The Central Processing Unit (CPU): The three units, viz., memory unit, control unit and
arithmetic unit together constitute the central processing unit.

1.4 COMPUTER HARDWARE AND SOFTWARE
1. Hardware

The various physical components of a computer system such as keyboard, mouse, monitor, printer,
disk drives, memory boards, etc., constitute the hardware. These hardware components are also

8 Principles of Programming Languages

called devices, which are controlled by the programs called device drivers present in the operating
systems. For example, MS-DOS uses a built-in device driver to control how information is read
and written to a floppy disk drive.

Software

The term software is generally used to describe the set of programs that enable the computer
hardware to function. There are three basic software categories:

1. Translation programs
2. Operating system programs
3. Application programs

The translation programs (compilers) are programs used by computer system to translate high
level languages or problem-oriented language into machine language.

Operating system programs assist in the overall operation of the computer system. They are
used to regulate and supervise the sequence of activities going on in the system at any time.
More detailed discussion about the OS is made in chapter 2.

Application programs are written by individual users to solve particular problems, such as
payroll software, general purpose accounting software, etc.

Storage of Information (Memory Types): In digital computers there are two types of memory
units, namely, operational units and storage units. A register (also called accumulator) is used
for temporary storage and manipulation of data, which are contained in the CPU. Besides storing
the data, they also temporarily store program instructions and control information concerning
which instruction is to be executed next. Because of their highly specialized nature, registers are
expensive relative to storage type memory. This type of memory is popularly called Random
Access Memory (RAM).

Read Only Memory (ROM): ROM is used for permanent storage of information. It contains
the information that CPU needs when you first turn on the computer as well as during the execution
this information is stored at the time of manufacture itself by the manufacturer. The information
on this can only be read, no new information can be stored or written on to it. RAM and ROM
are together known as primary storage devices.

The storage-type memory unit is designed to store information which is more permanent
in nature. Because the memory units do not have the necessary logic associated with them, the
value of the variable stored in the memory unit must be transferred to the register unit, before
arithmetic computations involving that variable is performed. When a program is executed, its
instructions and data generally reside in storage units. The entire set of storage units in the
mainframe is often called main memory. In some instances, programs can also reside in storage
units which do not belong to the main memory (secondary memory), for example, in devices
like magnetic disk, magnetic tape, magnetic drum, etc.

