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In recent years, the international community has been increasingly
concerned about the stresses imposed on the natural environment by
many chemical and energy-generating processes. As a result, the world is
witnessing an accelerated development and implementation of new green
technologies. These green technologies are called to provide ecologically
responsible solutions for the much needed supply of drinking water, clean
air, and various forms of energy.

Photocatalysis holds great promise for delivering these ground-breaking
technologies. Photocatalysis is a truly environmentally friendly process where
irradiation, either near UV or solar light, promotes photoexcitation of semi-
conductor solid surfaces. As a result, mobile electrons and positive surface
charges are generated. These excited sites and electrons accelerate oxidation
and reduction reactions, which are essential steps for pollutant degradation
and other photoinduced chemical transformations such as water splitting.

Photocatalysis and its related technological issues have been strongly
influenced by recent publications. The present Volume 36-Photocatalytic
Technologies of the Elsevier’s Advances in Chemical Engineering Series aims at
offering a comprehensive overview of the state-of-the-art photocatalytic
technology. In order to accomplish this, several prominent researchers
were invited to contribute a chapter for the Volume 36.

Chapter 1 examines the phenomenological principles involved in the
modeling of photocatalytic reactions including the photo-adsorption of
chemical species. This chapter proposes a method to quantify photo-
adsorbed species onto irradiated TiO,. The technique is applied to the
oxidation of phenol and benzyl alcohol.

Chapter 2 considers the removal of inorganic water contaminants using
photocatalysis. Metal cations react via one-electron steps first leading to
unstable chemical intermediates, and later to stable species. Three possible
mechanisms are identified: (a) direct reduction via photo-generated conduction
band electrons, (b) indirect reduction by intermediates generated from electron
donors, and (c) oxidative removal by electron holes or hydroxyl radicals. The
provided examples show the significance of these mechanisms for the removal
of water contaminants such as chromium, mercury, lead, uranium, and arsenic.

Chapter 3 addresses the photocatalytic mineralization of organic species in
water and its enhancement by using ferric ions. This methodology uses Photo-
CREC reactors with Fe-promoted TiO. It is shown that 5 ppm of Fe in water
provides an optimum iron concentration able to maximize the rates of

ix
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oxidation and mineralization for both phenol and its aromatic intermediates.
This chapter also describes a parallel-series kinetic reaction network. This
reaction network and the derived kinetic parameters are most suitable for
describing the improved phenol photocatalytic oxidation with ferric ions.

Chapter 4 reports research progress on hydrogen production via water
splitting using photocatalysis. It is stated that while water splitting with UV
light shows good prospects, water splitting under visible light requires a
significant efficiency improvement provided by an enhanced utilization of
irradiated photons per molecule of hydrogen produced. In order to accom-
plish this, new nanomaterials manufactured under close control of crystal-
linity, electronic structure, and morphology are proposed.

Chapter 5 addresses the scaling-up in photocatalytic reactors with catalyst
irradiation being identified as a most important engineering design parameter.
Itis stated that the photocatalytic reactor design involves a skilful combination
of a highly and uniformly irradiated photocatalyst, and an intensive mixing of
the TiO, suspension. In order to attain these design objectives, several reactor
designs are reviewed such as a multiple tube reactor, a tube light reactor, a
rotating tube reactor, and a Taylor vortex reactor.

Chapter 6 describes solar-powered photocatalytic reactors for the conver-
sion of organic water pollutants. Nonconcentrating reactors are identified as
some of the most energetically efficient units. It is reported that the absorption
of radiation is a critical parameter in the efficiency reactor evaluation. The
radiative transfer equation (RTE) solution under the simplified conditions
given by the P1 approximation is proposed for these assessments.

Chapter 7 reports a scaling-up procedure for photocatalytic reactors. The
described methodology uses a model which involves absorption of radia-
tion and photocatalyst reflection coefficients. The needed kinetics is
obtained in a small flat plate unit and extrapolated to a larger reactor
made of three concentric photocatalyst-coated cylindrical tubes. This proce-
dure is applied to the photocatalytic conversion of perchloroethylene in air
and to the degradation of formic acid and 4-chlorophenol in water.

Chapter 8 addresses the treatment of contaminated air streams using
photocatalysis. Special attention is given to the distinction between reaction
kinetics and mass transport processes. The reviewed studies show the
evolution from the early days of TiO, photocatalysis, where the aim was
to understand the basic process parameters, to today’s development of
phenomenological models assisting in the scaling-up of units.

In summary, the presentissue of Advances in Chemical Engineering Volume 36
offers an up-to-date overview and discussion of principles and applications of
photo catalytic reaction engineering. Altogether, Volume 36 is an invitation to
reflect on the possibilities of photocatalysis as a promising technology for green
reaction engineering.

Hugo I. de Lasa and Benito Serrano Rosales,
December 2008.
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2 Vincenzo Augugliaro et al.

1. INTRODUCTION

In the field of heterogeneous catalysis the need of kinetic investigation is
strictly connected to the main task of a chemical engineer, that is, designing
properly a chemical reactor. A successful reactor design should thus start
from reliable kinetic models that describe the rate of catalytic reactions and,
therefore, from the reaction mechanisms, which means understanding reac-
tions at a molecular level. In catalysis, due to the complex nature of this
phenomenon, adsorption and desorption of reactants as well as several
steps for surface reactions must be taken into account. For heterogeneous
photocatalysis, which may be considered a special case of heterogeneous
catalysis, the previous considerations hold true with the added difficulty
that the light absorbed by the photocatalyst affects both adsorption
(photoadsorption) and surface reactions.

The use of irradiation to initiate chemical reactions is the principle on
which heterogeneous photocatalysis is based. When a wide band gap semi-
conductor like titanium dioxide (Carp et al., 2004) is irradiated with suitable
light, excited electron-hole pairs result that can be applied in chemical
processes to modify specific compounds. If recombination or lattice reaction
does not involve all the photogenerated pairs, the conduction band elec-
trons participate in reduction reactions on the catalyst surface while positive
holes are involved in oxidation reactions. Suitable substrates must be
adsorbed on the catalyst surface for the occurrence of a photoreaction
process which always starts with the substrate(s) adsorption and eventually
ends with the product(s) desorption. On these grounds heterogeneous
photocatalysis is defined as follows (Braslavsky, 2007): “Change in the rate
of a chemical reaction or its initiation under the action of ultraviolet, visible, or
infrared radiation in the presence of a substance, the photocatalyst, that absorbs
light and is involved in the chemical transformation of the reaction partners.”
Symbolically overall photocatalytic reaction is expressed by the equation:

R + Cat + hv — P + Cat (1)

where R and P are reactants and reaction products, respectively, present in
the gas or liquid phase, Cat is the solid photoadsorbent (photocatalyst), and
hv is the symbol of photons able to be absorbed by the photocatalyst.

The knowledge of heterogeneous photocatalytic systems has grown very
much since the pioneering work on water photolysis carried out with a
semiconductor electrode (Fujishima and Honda, 1972). The basic principles
of heterogeneous photocatalysis are now well established (Fujishima et al.,
1999; Kaneko and Okura, 2002; Schiavello, 1997) and also the applicative
aspects of this technology are being investigated in the fields not only of
environment remediation (Augugliaro et al., 2006; Fujishima et al., 2000;
Mills and Le Hunte, 1997) but also of green chemistry (Gonzalez et al., 1999;
Mohamed et al., 2002; Yurdakal et al., 2008a). There are, however, many
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important aspects waiting to be investigated. One of these is the correct
approach for the determination of the photoadsorption capacity under
photoprocess occurrence, that is, of the amount of substrate adsorbed on
the surface of a photocatalyst which is being irradiated.

Photon absorption by photocatalyst is regarded as the first stage of photo-
excitation of heterogeneous system; the photoexcitation pathways of wide
band gap solids may involve photogeneration of excitons and/or free
charge carriers, depending on photocatalyst features such as fundamental
absorption band, extrinsic/intrinsic defect absorption bands, or UV-induced
color center bands. Independently of photoexcitation type, photon absorp-
tion has two main effects: (i) it changes the characteristics of photocatalyst
surface and (ii) it generates active photoadsorption centers. A typical case of
the first effect is that band gap irradiation induces superhydrophilicity
(photoinduced superhydrophilicity, PSH) on the TiO, surface, which
shows hydrophobic features under dark conditions (Fujishima and Zhang,
2006; Fujishima et al., 2000; Wang et al., 1997). This PSH is accompanied by
photocatalytic activity, as both phenomena have a common ground, so that
the surface-adsorbed compounds may be either photooxidized or washed
away by water.

The second important effect is that irradiation absorption generates active
states of the photoadsorption centers with trapped electrons and holes. By
definition (Serpone and Emeline, 2002) “the photoadsorption center is a surface
site which reaches an active state after photoexcitation and then it is able to form
photoadsorbed species by chemical interaction with substrate (molecules, or atoms,
or ions) at solid/fluid interface.” In turn, the active state of a surface photo-
adsorption center is “an electronically excited surface center, i.e. surface defect
with trapped photogenerated charge carrier that interacts with atoms, molecules or
ions at the solid/gas or solid/liquid interfaces with formation of chemisorbed
species.”

Adsorption initiated by light absorbed by the solid surface (photoadsorp-
tion) can be expressed by the following simple mechanism (Ryabchuk, 2004):

S+hy— S (2)
S* S (3)
S"+M — Mp_o46 (4)

where S is the photoadsorption center, S” the active state of photoadsorption
center, M the substrate in the fluid phase, and M, .4, the photoadsorbed
substrate. Equation (2) describes the photoexcitation of adsorbent with
formation of active S* centers and Equation (4) the adsorption of molecule
M or “chemical decay” of the active states S”, while Equation (3) depicts the
“physical decay” of S" state.



4 Vincenzo Augugliaro et al.

For a liquid-solid catalytic reaction the common technique for determin-
ing the adsorbed amount of a species dissolved in the solution is that of
performing experiments in a batch not-reacting system and of measuring:
(i) the volume of liquid solution; (ii) the concentration of the adsorbing
species in the starting solution; and (iii), after that a known mass of catalyst
is added to the liquid and steady-state conditions are reached, the concen-
tration decrease determined in the starting solution due to the added cata-
lyst. This procedure is based on the adequate assumptions that the catalyst’s
superficial features are not affected by the composition of the surrounding
fluid phase and that the measured decrease of the species amount in the
solution is equal to the amount of species adsorbed on the catalyst. The
same procedure cannot be applied for the photoadsorption determination;
in fact, photoadsorption occurs under the simultaneous presence of irradia-
tion and of reducing and oxidizing species needed for charge carriers to be
trapped on the semiconductor surface. Under these conditions the photo-
reaction also starts so that the measured decrease of species in the batch-
irradiated slurry is determined both by photoadsorption and by reaction,
these contributions being indistinguishable from the solution side.

This complexity determines that investigations on heterogeneous photo-
catalytic processes sometimes report information only on dark adsorption
and use this information for discussing the results obtained under irradia-
tion. This extrapolation is not adequate as the characteristics of photocatalyst
surface change under irradiation and, moreover, active photoadsorption
centers are generated. Nowadays very effective methods allow a sound
characterization of bulk properties of catalysts, and powerful spectroscopies
give valuable information on surface properties. Unfortunately information
on the photoadsorption extent under real reaction conditions, that is, at the
same operative conditions at which the photoreactivity tests are performed,
are not available. For the cases in which photoreaction events only occur on
the catalyst surface, a critical step to affect the effectiveness of the transfor-
mation of a given compound is to understand the adsorption process of that
compound on the catalyst surface. The study of the adsorbability of the
substrate allows one to predict the mechanism and kinetics that promote
its photoreaction and also to correctly compare the performance of different
photocatalytic systems.

This chapter presents a quantitative method to determine the photoad-
sorption capacity of a polycrystalline semiconductor oxide irradiated in
liquid-solid system. The determination is performed under reaction
conditions so that it is really indicative of the photoadsorption capacity.
The method uses the experimental results obtained in typical batch photo-
reactivity runs; on this ground it has been applied to the following
photocatalytic processes carried out in aqueous suspensions: (i) oxidation
of phenol in the presence of a commercial TiO, catalyst (Degussa P25) and
(ii) oxidation of benzyl alcohol in the presence of a home-prepared TiO,
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catalyst. The influence on photoactivity of substrate concentration, catalyst
amount, and irradiation power is investigated. The kinetic modeling of the
photooxidation processes is carried out by taking into account the photo-
adsorption phenomenon by means of three types of isotherm equations, that
is, Langmuir, Freundlich, and Redlich-Peterson. Nonlinear regression
analysis applied to all the photoreactivity results allows establishing the
most appropriate correlation for the photoadsorption isotherm and also to
determine the values of the model parameters. The best fitting model is
evaluated by choosing the Marquardt’s percent standard deviation (MPSD)
as error estimation tool.

2. EXPERIMENTAL

Photoreactivity runs of phenol degradation were carried out in aqueous
suspensions of a commercial TiO, (Degussa P25) while for benzyl alcohol
degradation a home-prepared nanostructured TiO, specimen was used. The
preparation method of home-prepared catalyst is summarized here; the
details are elsewhere reported (Addamo et al., 2004). The precursor solution
was obtained by slowly adding 5mL of TiCl, drop by drop into a 200-mL
beaker containing 50 mL of water; during the addition, which lasted 5min,
the solution was magnetically stirred by a cylindrical bar (length, 3cm;
diameter, 0.5cm) at 600 rpm. After that the beaker was closed and mixing
was prolonged for 12h at room temperature, eventually obtaining a clear
solution. This solution was transferred to a round-bottom flask having on its
top a Graham condenser (Palmisano et al., 2007a). The flask was put in
boiling water, thus determining the boiling of the solution; the duration of
the boiling was of 0.5h, obtaining a white suspension at the end of the
treatment. The suspension was then dried at 323 K by means of a rotovapor
machine (model Buchi Rotovapor M) working at 150 rpm, in order to obtain
the final powdered, poorly crystalline anatase-phase catalyst.

The flow-sheet of the experimental setup is shown in Figure 1. The details
are reported elsewhere (Palmisano et al., 2007b). A cylindrical batch photo-
reactor of Pyrex glass with immersed lamp was used for the photocatalytic
runs of benzyl alcohol and phenol oxidation. On the top of the reactor three
ports allowed the inflow and outflow of gases, the pH and temperature
measurements, and the withdrawal of samples for analysis.

The catalyst was used in aqueous suspension well mixed by means of a
magnetic stirrer. The reacting mixture was illuminated by a mercury
medium-pressure lamp (type B, Helios Italquartz, Milan, Italy) coaxial
with the photoreactor. A Pyrex thimble surrounding the lamp allowed the
circulation of distilled water in order to cool the lamp and cutoff infrared
radiation; in these conditions the reactor temperature was of 295 + 2K.
Lamps of 125, 500, or 1,000 W electric power were used; average irradiances



