SHARGEL & YU'S

# APPLIED BIOPHARMACEUTICS

AND

# **PHARMACOKINETICS**

SEVENTH EDITION



LEON SHARGEL ANDREW B.C. YU

# Applied Biopharmaceutics & Pharmacokinetics

Seventh Edition

#### **EDITORS**

#### Leon Shargel, PHD, RPh

Applied Biopharmaceutics, LLC Raleigh, North Carolina Affiliate Professor, School of Pharmacy Virginia Commonwealth University, Richmond, Virginia Adjunct Associate Professor, School of Pharmacy University of Maryland, Baltimore, Maryland

#### Andrew B.C. Yu, PHD, RPh

Registered Pharmacist Gaithersburg, Maryland Formerly Associate Professor of Pharmaceutics Albany College of Pharmacy Albany, New York Formerly CDER, FDA Silver Spring, Maryland





#### Applied Biopharmaceutics & Pharmacokinetics, Seventh Edition

Copyright © 2016 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

Previous editions copyright © 2012 by The McGraw-Hill Companies, Inc.; © 2005, 1999, 1993 by Appleton & Lange; © 1985, 1980 by Appleton-Century-Crofts.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 20 19 18 17 16 15

ISBN 978-0-07-183093-5 MHID 0-07-183093-6

This book was set in Times LT Std by Cenveo® Publisher Services.

The editor was Regina Y. Brown

The production supervisor was Rick Ruzycka.

The production manager was Tanya Punj, Cenveo Publisher Services.

The design was by Elise Lansdon; the cover design was by Barsoom Design, with cover art © Gregor Schuster/Corbis.

RR Donnelley was printer and binder.

This book is printed on acid-free paper.

#### Library of Congress Cataloguing-in-Publication Data

Shargel, Leon, 1941-, author.

Applied biopharmaceutics & pharmacokinetics / Leon Shargel, Andrew B.C. Yu.—Seventh edition.

p.; cm.

Applied biopharmaceutics and pharmacokinetics

Includes bibliographical references and index.

ISBN 978-0-07-183093-5 (hardcover : alk. paper)—ISBN 0-07-183093-6 (hardcover : alk. paper)

I. Yu, Andrew B. C., 1945-, author. II. Title. III. Title: Applied biopharmaceutics and pharmacokinetics.

[DNLM: 1. Biopharmaceutics. 2. Pharmacokinetics. 3. Drug Administration Routes. 4. Models, Chemical. QV 38]

RM301.4

615.7—dc23

2015014810

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

# Applied Biopharmaceutics & Pharmacokinetics

#### **Notice**

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed

to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.

此为试读,需要完整PDF请访问: www.ertongbook.com

# Contributors

S. Thomas Abraham, PhD Associate Professor Department of Pharmaceutical Sciences College of Pharmacy & Health Sciences Campbell University Buies Creek, North Carolina

Michael L. Adams, PharmD, PhD Associate Professor Department of Pharmaceutical Sciences College of Pharmacy & Health Sciences Campbell University Buies Creek, North Carolina

Antoine Al-Achi, PhD Associate Professor Campbell University College of Pharmacy & Health Sciences Buies Creek, North Carolina

Lily K. Cheung, PharmD
Assistant Professor
Department of Pharmacy Practice
College of Pharmacy & Health Sciences
Texas Southern University
Houston, Texas

Diana Shu-Lian Chow, PhD
Professor of Pharmaceutics
Director
Institute for Drug Education and Research (IDER)
College of Pharmacy
University of Houston
Houston, Texas

Philippe Colucci, PhD Principal Scientist Learn and Confirm Inc. Sr. Laurent, QC, Canada

Dale P. Conner, Pharm.D. Director Office of Bioequivalence Office of Generic Drugs CDER, FDA Silver Spring, Maryland

Barbara M. Davit, PhD, JD Executive Director Biopharmaceutics Merck & Co. Kenilworth, New Jersey

Hong Ding, PhD Assistant Professor Department of Immunology Herbert Wertheim College of Medicine Florida International University Miami, Florida

John Z. Duan, PhD Master Reviewer Office of New Drug Products Office of Pharmaceutical Quality FDA/CDER Silver Spring, Maryland Murray P. Ducharme, PharmD, FCCP, FCP
President and CEO
Learn and Confirm Inc.
Sr. Laurent, QC, Canada
Professeur Associé
Faculté de Pharmacie
University of Montreal, Canada
Visiting Professor
Faculty of Pharmacy
Rhodes University, South Africa

Mathangi Gopalakrishnan, MS, PhD Research Assistant Professor Center for Translational Medicine School of Pharmacy University of Maryland Baltimore, Maryland

Phillip M. Gerk, PharmD, PhD Associate Professor Department of Pharmaceutics Virginia Commonwealth University MCV Campus School of Pharmacy Richmond, Virginia

Charles Herring, BSPharm, PharmD, BCPS, CPP
Associate Professor
Department of Pharmacy Practice
College of Pharmacy & Health Sciences
Campbell University
Clinical Pharmacist Practitioner
Adult Medicine Team
Downtown Health Plaza of Wake Forest Baptist
Health
Winston-Salem, North Carolina

Christine Yuen-Yi Hon, PharmD, BCOP Clinical Pharmacology Reviewer Division of Clinical Pharmacology III Office of Clinical Pharmacology Office of Translational Sciences Center for Drug Evaluation and Research Food and Drug Administration Silver Spring, Maryland Minerva A. Hughes, PhD, RAC (US) Senior Pharmacologist Food and Drug Administration Center for Drug Evaluation and Research Silver Spring, Maryland

Manish Issar, PhD
Assistant Professor of Pharmacology
College of Osteopathic Medicine of the Pacific
Western University of Health Sciences
Pomona, California

Vipul Kumar, PhD Senior Scientist I Nonclinical Development Department Cubist Pharmaceuticals Inc. Lexington, Massachusetts

S.W. Johnny Lau, RPh, PhD Senior Clinical Pharmacologist Food and Drug Administration Office of Clinical Pharmacology Silver Spring, Maryland

David S.H. Lee, PharmD, PhD
Assistant Professor
Department of Pharmacy Practice
Oregon State University/Oregon Health and Science
University College of Pharmacy
Portland, Oregon

Patrick J Marroum, PhD Director Clinical Pharmacology and Pharmacometrics AbbVie North Chicago, Illinois

Shabnam N. Sani, PharmD, PhD
Assistant Professor
Department of Pharmaceutical and Administrative
Sciences
College of Pharmacy
Western New England University
Springfield, Massachusetts

Leon Shargel, PhD, RPh
Manager and Founder
Applied Biopharmaceutics, LLC
Raleigh, North Carolina
Affiliate Professsor
School of Pharmacy
Virginia Commonwealth University
Richmond, Virginia

Sandra Suarez Sharp, PhD
Master Biopharmaceutics Reviewer/Biopharmaceutics
Lead
Office of New Drug Products/Division of
Biopharmaceutics
Office of Pharmaceutical Quality
Food and Drug Administration
Silver Spring, Maryland

Rodney Siwale, PhD, MS
Assistant Professor
Department of Pharmaceutical and Administrative
Sciences
College of Pharmacy
Western New England University
Springfield, Massachusetts

Changquan Calvin Sun, PhD Associate Professor of Pharmaceutics University of Minnesota Department of Pharmaceutics College of Pharmacy Minneapolis, Minnesota

He Sun, PhD

President and CEO
Tasly Pharmaceuticals Inc.
Rockville, Maryland
Professor and Chairman
Department of Pharmaceutical Economics and Policy
School of Pharmaceutical Science and Technology
Tianjin University
Tianjin, P. R. China

Vincent H. Tam, PharmD, BCPS (Infectious Diseases) Professor Department of Clinical Sciences and Administration University of Houston College of Pharmacy Texas Medical Center Campus Houston, Texas

Dr. Susanna Wu-Pong, PhD Associate Professor Director Pharmaceutical Sciences Graduate Program VCU School of Pharmacy Richmond, Virginia

Andrew B.C. Yu, PhD, RPh Registered Pharmacist Formerly senior reviewer, CDER, FDA Associate Pharmaceutics Professor Albany College of Pharmacy Albany, New York

Corinne Seng Yue, BPharm, MSc, PhD Principal Scientist Learn and Confirm Inc. Sr. Laurent, QC, Canada

Hong Zhao, PhD
Clinical Pharmacology Master Reviewer
Clinical Pharmacology Team Leader
Office of Clinical Pharmacology (OCP)
Office of Translational Sciences (OTS)
Center for Drug Evaluation and Research (CDER)
U.S. Food and Drug Administration (FDA)
Silver Spring, Maryland

HaiAn Zheng, PhD Associate Professor Department of Pharmaceutical Sciences Albany College of Pharmacy and Health Sciences Albany, New York

And the second s

the Committee with a light of the control of the co

o mer matti fer sejilijin i Armana A.A. allespisa iz

The first control of the control of

197,44

bon monored from the transport of a start of an artist of the start of

the state of the state of

recently a property of the second of the sec

MR THE AT THE TOTAL

raceled town one to demonstrate to the control of t

Propaga Service Williams Miles Phillips Propaga Science Lead to the Service Service

charles (Carles)

The control of the co

Academia de la companya de la compan

# **Preface**

The publication of this seventh edition of Applied Biopharmaceutics and Pharmacokinetics represents over three decades in print. Since the introduction of classic pharmacokinetics in the first edition, the discipline has expanded and evolved greatly. The basic pharmacokinetic principles and biopharmaceutics now include pharmacogenetics, drug receptor theories, advances in membrane transports, and functional physiology. These advances are applied to the design of new active drug moieties, manufacture of novel drug products, and drug delivery systems. Biopharmaceutics and pharmacokinetics play a key role in the development of safer drug therapy in patients, allowing individualizing dosage regimens and improving therapeutic outcomes.

In planning for the seventh edition, we realized that we needed expertise for these areas. This seventh edition is our first edited textbook in which an expert with intimate knowledge and experience in the topic was selected as a contributor. We would like to acknowledge these experts for their precious time and effort. We are also grateful to our readers and colleagues for their helpful feedback and support throughout the years.

As editors of this edition, we kept the original objectives, starting with fundamentals followed by a holistic integrated approach that can be applied to practice (see scope and objectives in Preface to the first edition). This textbook provides the reader with a basic and practical understanding of the principles of biopharmaceutics and pharmacokinetics that can be applied to drug product development and drug therapy. Practice problems, clinical examples, frequently asked questions and learning questions are included in each chapter to demonstrate how these concepts relate to practical situations. This textbook remains unique

in teaching basic concepts that may be applied to understanding complex issues associated with *in vivo* drug delivery that are essential for safe and efficacious drug therapy.

The primary audience is pharmacy students enrolled in pharmaceutical science courses in pharmacokinetics and biopharmaceutics. This text fulfills course work offered in separate or combined courses in these subjects. Secondary audiences for this text-book are research, technological and development scientists in pharmaceutics, biopharmaceutics, and pharmacokinetics.

This edition represents many significant changes from previous editions.

- The book is an edited textbook with the collaboration of many experts well known in biopharmaceutics, drug disposition, drug delivery systems, manufacturing, clinical pharmacology, clinical trials, and regulatory science.
- Many chapters have been expanded and updated to reflect current knowledge and application of biopharmaceutics and pharmacokinetics. Many new topics and updates are listed in Chapter 1.
- Practical examples and questions are included to encourage students to apply the principles in patient care and drug consultation situations.
- Learning questions and answers appear at the end of each chapter.
- Three new chapters have been added to this edition including, Biostatistics which provides introduction for popular topics such as risk concept, non-inferiority, and superiority concept in new drug evaluation, and Application of Pharmacokinetics in Specific Populations which discusses issues such as drug and patient related pharmacy

topics in during therapy in various patient populations, and Biopharmaceutic Aspects of the Active Pharmaceutical Ingredient and Pharmaceutical Equivalence which explains the synthesis, quality and physical/chemical properties of the active pharmaceutical ingredients affect the bioavailability of the drug from the drug product and clinical efficacy.

> Leon Shargel Andrew B.C. Yu

# **Preface to First Edition**

The publication of the twelfth edition of this book is a testament to the vision and ideals of the original authors, Alfred Gilman and Louis Goodman, who, in 1941set forth the principles that have guided the book through eleven editions: to correlate pharmacology with related medical sciences, to reinterpret the actions and uses of drugs in light of advances in medicine and the basic biomedical sciences, to emphasize the applications of pharmacodynamics to therapeutics, and to create a book that will be useful to students of pharmacology and to physicians. These precepts continue to guide the current edition.

As with editions since the second, expert scholars have contributed individual chapters. A multiauthored book of this sort grows by accretion, posing challenges editors but also offering memorable pearls to the reader. Thus, portions of prior editions persist in the current edition, and I hasten to acknowledge the contributions of previous editors and authors, many of whom will see text that looks familiar. However, this edition differs noticeably from its immediate predecessors. Fifty new scientists, including a number from out-side. the U.S., have joined as contributors, and all chapters have been extensively updated. The focus on basic principles continues, with new chapters on drug invention, molecular mechanisms of drug action, drug toxicity and poisoning, principles of antimicrobial therapy and pharmacotherapy of obstetrical and gynecological disorders. Figures are in full color. The editors have continued to standardize the organization of chapters: thus, students should easily find the basic physiology, biochemistry, and pharmacology set forth in regular type; bullet points highlight important lists within the text; the clinician and expert will find details in extract type under clear headings.

Online features now supplement the printed edition. The entire text, updates, reviews of newly approved drugs, animations of drug action, and hyper links to relevant text in the prior edition are available on the Goodman & Gilman section of McGraw-Hill's websites, *AccessMedicine.com* and *AccessPharmacy.com*. An Image Bank CD accompanies the book and makes all tables and figures available for use in presentations.

The process of editing brings into view many remarkable facts, theories, and realizations. Three stand out: the invention of new classes of drugs has slowed to a trickle; therapeutics has barely begun to capitalize on the information from the human genome project; and, the development of resistance to antimicrobial agents, mainly through their overuse in medicine and agriculture, threatens to return us to the pre-antibiotic era. We have the capacity and ingenuity to correct these shortcomings.

Many, in addition to the contributors, deserve thanks for their work on this edition; they are acknowledged on an accompanying page. In addition, I am grateful to Professors Bruce Chabner (Harvard Medical School/Massachusetts General Hospital) and Björn Knollmann (Vanderbilt University Medical School) for agreeing to be associate editors of this edition at a late date, necessitated by the death of my colleague and friend Keith Parker in late 2008. Keith and I worked together on the eleventh edition and on planning this edition. In anticipation of the editorial work ahead, Keith submitted his chapters before anyone else and just a few weeks before his death; thus, he is well represented in this volume, which we dedicate to his memory.

# **About the Authors**

Dr. Leon Shargel is a consultant for the pharmaceutical industry in biopharmaceutics and pharmacokinetics. Dr. Shargel has over 35 years experience in both academia and the pharmaceutical industry. He has been a member or chair of numerous national committees involved in state formulary issues, biopharmaceutics and bioequivalence issues, institutional review boards, and a member of the USP Biopharmaceutics Expert Committee. Dr. Shargel received a BS in pharmacy from the University of Maryland and a PhD in pharmacology from the George Washington University Medical Center. He is a registered pharmacist and has over 150 publications including several leading textbooks in pharmacy. He is a member of various professional societies, including the American

Association Pharmaceutical Scientists (AAPS), American Pharmacists Association (APhA), and the American Society for Pharmacology and Experimental Therapeutics (ASPET).

**Dr. Andrew Yu** has over 30 years of experience in academia, government, and the pharmaceutical industry. Dr. Yu received a BS in pharmacy from Albany College of Pharmacy and a PhD in pharmacokinetics from the University of Connecticut. He is a registered pharmacist and has over 30 publications and a patent in novel drug delivery. He had lectured internationally on pharmaceutics, drug disposition, and drug delivery.

## Contents

Contributors xi Preface xv Preface to First Edition xvii

# 1. Introduction to Biopharmaceutics and Pharmacokinetics 1

Drug Product Performance 1 Biopharmaceutics 1 Pharmacokinetics 4 Pharmacodynamics 4 Clinical Pharmacokinetics 5 Practical Focus 8 Pharmacodynamics 10 Drug Exposure and Drug Response 10 Toxicokinetics and Clinical Toxicology 10 Measurement of Drug Concentrations 11 Basic Pharmacokinetics and Pharmacokinetic Models 15 Chapter Summary 21 Learning Questions 22 Answers 23 References 25 Bibliography 25

### 2. Mathematical Fundamentals in Pharmacokinetics 27

Calculus 27
Graphs 29
Practice Problem 31
Mathematical Expressions and Units 33
Units for Expressing Blood Concentrations 34
Measurement and Use of Significant Figures 34
Practice Problem 35
Practice Problem 36
Rates and Orders of Processes 40
Chapter Summary 42
Learning Questions 43
Answers 46
References 50

#### 3. Biostatistics 51

Variables 51
Types of Data (Nonparametric Versus Parametric) 51
Distributions 52

Measures of Central Tendency 53 Measures of Variability 54 Hypothesis Testing 56 Statistically Versus Clinically Significant Differences 58 Statistical Inference Techniques in Hypothesis Testing for Parametric Data 59 Goodness of Fit 63 Statistical Inference Techniques for Hypothesis Testing With Nonparametric Data 63 Controlled Versus Noncontrolled Studies 66 Blinding 66 Confounding 66 Validity 67 Bioequivalence Studies 68 Evaluation of Risk for Clinical Studies 68 Chapter Summary 70 Learning Questions 70 Answers 72 References 73

#### 4. One-Compartment Open Model: Intravenous Bolus Administration

Elimination Rate Constant 76

Apparent Volume of Distribution 77
Clearance 80
Clinical Application 85
Calculation of *k* From Urinary Excretion Data 8
Practice Problem 87
Practice Problem 88
Clinical Application 89
Chapter Summary 90

Learning Questions 90 Answers 92 Reference 96

Bibliography 96

#### 5. Multicompartment Models: Intravenous Bolus Administration

Two-Compartment Open Model 100 Clinical Application 105 75

Practice Problem 107 Practical Focus 107 Practice Problem 110 Practical Focus 113 Three-Compartment Open Model 114 Clinical Application 115 Clinical Application 116 Determination of Compartment Models Practical Focus 117 Clinical Application 118 Practical Problem 120 Clinical Application 121 Practical Application 121 Clinical Application 122 Chapter Summary 123 Learning Questions 124 Answers 126 References 128 Bibliography 129

#### 6. Intravenous Infusion 131

One-Compartment Model Drugs 131
Infusion Method for Calculating Patient Elimination Half-Life 135
Loading Dose Plus IV Infusion—One-Compartment Model 136
Practice Problems 138
Estimation of Drug Clearance and  $V_{\rm D}$  From Infusion Data 140
Intravenous Infusion of Two-Compartment Model Drugs 141
Practical Focus 142
Chapter Summary 144
Learning Questions 144
Answers 146
Reference 148
Bibliography 148

#### 7. Drug Elimination, Clearance, and Renal Clearance 149

Drug Elimination 149
Drug Clearance 150
Clearance Models 152
The Kidney 157
Clinical Application 162
Practice Problems 163
Renal Clearance 163
Determination of Renal Clearance 168
Practice Problem 169
Practice Problem 169
Relationship of Clearance to Elimination Half-Life and Volume of Distribution 170
Chapter Summary 171
Learning Questions 171
Answers 172

References 175 Bibliography 175

# 8. Pharmacokinetics of Oral Absorption 177

Introduction 177 Basic Principles of Physiologically Based Absorption Kinetics (Bottom-Up Approach) 178 Absoroption Kinetics (The Top-Down Approach) 182 Pharmacokinetics of Drug Absorption 182 Significance of Absorption Rate Constants 184 Zero-Order Absorption Model 184 Clinical Application—Transdermal Drug Delivery 185 First-Order Absorption Model 185 Practice Problem 191 Chapter Summary 199 Answers 200 Application Questions 202 References 203 Bibliography 204

#### 9. Multiple-Dosage Regimens 205

Drug Accumulation 205 Clinical Example 209 Repetitive Intravenous Injections Intermittent Intravenous Infusion 214 Clinical Example 216 Estimation of k and  $V_D$  of Aminoglycosides in Clinical Situations 217 Multiple-Oral-Dose Regimen 218 Loading Dose 219 Dosage Regimen Schedules 220 Clinical Example 222 Practice Problems 222 Chapter Summary 224 Learning Questions 225 Answers 226 References 228 Bibliography 228

#### 10. Nonlinear Pharmacokinetics 229

Saturable Enzymatic Elimination Processes
Practice Problem 232
Practice Problem 233
Drug Elimination by Capacity-Limited
Pharmacokinetics: One-Compartment
Model, IV Bolus Injection 233
Practice Problems 235
Clinical Focus 242
Clinical Focus 242
Drugs Distributed as One-Compartment
Model and Eliminated by Nonlinear
Pharmacokinetics 243

Clinical Focus 244 Chronopharmacokinetics and Time-Dependent Pharmacokinetics 245 Clinical Focus 247 Bioavailability of Drugs That Follow Nonlinear Pharmacokinetics 247 Nonlinear Pharmacokinetics Due to Drug-Protein Binding 248 Potential Reasons for Unsuspected Nonlinearity 251 Dose-Dependent Pharmacokinetics 252 Clinical Example 253 Chapter Summary 254 Learning Questions 254 Answers 255 References 257 Bibliography 258

# 11. Physiologic Drug Distribution and Protein Binding 259

Physiologic Factors of Distribution 259 Clinical Focus 267 Apparent Volume Distribution 267 Practice Problem 270 Protein Binding of Drugs 273 Clinical Examples 275 Effect of Protein Binding on the Apparent Volume of Distribution 276 Practice Problem 279 Clinical Example 280 Relationship of Plasma Drug-Protein Binding to Distribution and Elimination 281 Clinical Examples 282 Clinical Example 284 Determinants of Protein Binding 285 Clinical Example 285 Kinetics of Protein Binding 286 Practical Focus 287 Determination of Binding Constants and Binding Sites by Graphic Methods 287 Clinical Significance of Drug-Protein Binding 290 Clinical Example 299 Clinical Example 300 Modeling Drug Distribution 301 Chapter Summary 302 Learning Questions 303 Answers 304 References 306 Bibliography 307

#### 12. Drug Elimination and Hepatic Clearance 309

Route of Drug Administration and Extrahepatic Drug Metabolism 309

Practical Focus 311 Hepatic Clearance 311 Extrahepatic Metabolism 312 Enzyme Kinetics-Michaelis-Menten Equation 313 Clinical Example 317 Practice Problem 319 Anatomy and Physiology of the Liver 321 Hepatic Enzymes Involved in the Biotransformation of Drugs 323 Drug Biotransformation Reactions 325 Pathways of Drug Biotransformation 326 Drug Interaction Example 331 Clinical Example 338 First-Pass Effects 338 Hepatic Clearance of a Protein-Bound Drug: Restrictive and Nonrestrictive Clearance From Binding 344 Biliary Excretion of Drugs 346 Clinical Example 348 Role of Transporters on Hepatic Clearance and Bioavailability 348 Chapter Summary 350 Learning Questions 350 Answers 352 References 354 Bibliography 355

#### 13. Pharmacogenetics and Drug Metabolism 357

Genetic Polymorphisms 358
Cytochrome P-450 Isozymes 361
Phase II Enzymes 366
Transporters 367
Chapter Summary 368
Glossary 369
Abbreviations 369
References 370

#### 14. Physiologic Factors Related to Drug Absorption 373

Drug Absorption and Design
of a Drug Product 373
Route of Drug Administration 374
Nature of Cell Membranes 377
Passage of Drugs Across Cell Membranes 378
Drug Interactions in the Gastrointestinal
Tract 389
Oral Drug Absorption 390
Oral Drug Absorption During Drug Product
Development 401

Methods for Studying Factors That Affect Drug Absorption 402

Effect of Disease States on Drug Absorption 405 Miscellaneous Routes of Drug Administration 407 Chapter Summary 408 Learning Questions 409 Answers to Questions 410 References 411 Bibliography 414

#### 15. Biopharmaceutic Considerations in Drug Product Design and *In Vitro* Drug Product Performance 415

Biopharmaceutic Factors and Rationale for Drug Product Design 416 Rate-Limiting Steps in Drug Absorption 418 Physicochemical Properties of the Drug 420

Formulation Factors Affecting Drug Product Performance 423

Drug Product Performance, *In Vitro*: Dissolution and Drug Release Testing 425

Compendial Methods of Dissolution 429
Alternative Methods of Dissolution Testing 431

Dissolution Profile Comparisons 434

Meeting Dissolution Requirements 436 Problems of Variable Control in Dissolution

Testing 437
Performance of Drug Products: In Vitro–In Vivo
Correlation 437

Approaches to Establish Clinically Relevant Drug
Product Specifications 441

Drug Product Stability 445

Considerations in the Design of a Drug

Product 446

Drug Product Considerations 450

Clinical Example 456 Chapter Summary 461

Learning Questions 462

Answers 462

References 463 Bibliography 466

# 16. Drug Product Performance, *In Vivo*: Bioavailability and Bioequivalence 469

Drug Product Performance 469

Purpose of Bioavailability and Bioequivalence

Studies 471

Relative and Absolute Availability 472

Practice Problem 474

Methods for Assessing Bioavailability and

Bioequivalence 475

In Vivo Measurement of Active Moiety or Moieties in Biological Fluids 475

Bioequivalence Studies Based on Pharmacodynamic Endpoints—In Vivo Pharmacodynamic (PD)

Comparison 478

Bioequivalence Studies Based on Clinical Endpoints—Clinical Endpoint Study 479

In Vitro Studies 481

Other Approaches Deemed Acceptable (by the FDA) 482 Bioequivalence Studies Based on Multiple Endpoints 482 Bioequivalence Studies 482 Design and Evaluation of Bioequivalence Studies 484 Study Designs 490 Crossover Study Designs 491 Clinical Example 496 Clinical Example 496 Pharmacokinetic Evaluation of the Data 497 The Partial AUC in Bioequivalence Analysis 498 Examples of Partial AUC Analyses 499 Bioequivalence Examples 500 Study Submission and Drug Review Process Waivers of In Vivo Bioequivalence Studies (Biowaivers) 503 The Biopharmaceutics Classification System (BCS) 507 Generic Biologics (Biosimilar Drug Products) 510 Clinical Significance of Bioequivalence Studies 511

#### 17. Biopharmaceutical Aspects of the Active Pharmaceutical Ingredient and Pharmaceutical Equivalence 529

Special Concerns in Bioavailability and

Bioequivalence Studies 512 Generic Substitution 514

Chapter Summary 520 Learning Questions 520

Glossarv 517

Answers 525 References 526

Introduction 529
Pharmaceutical Alternatives 533
Practice Problem 534

Bioequivalence of Drugs With Multiple Indications 536

Formulation and Manufacturing Process Changes 536

Size, Shape, and Other Physical Attributes of Generic Tablets and Capsules 536

Changes to an Approved NDA or ANDA 537 The Future of Pharmaceutical Equivalence and

Therapeutic Equivalence 538 Biosimilar Drug Products 539

Historical Perspective 540

Chapter Summary 541

Learning Questions 541

Answers 542

References 542