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Preface

Nonlinear wave phenomena are of great importance in the physical world and have
been for a long time a challenging topic of research for both pure and applied math-
ematicians. There are numerous nonlinear evolution equations for which we need to
analyze the properties of the solutions for time evolution of the systems.

The investigation of the travelling wave solutions to nonlinear evolution equa-
tions plays an important role in the mathematical physics. For example, the wave
- phenomena observed in fluid dynamics, plasma and elastic media are often medelled
by the bell shaped solitary wave or kink shaped (wavefront) travelling wave solu-
tions. To find exact travelling wave solutions for a given nonlinear wave system,
since 1970’s, a lot of methods have been developed such as the inverse scatter-
ing method, Darboux transformation method, Hirota bilinear method, algebraic-
geometric method, tanh method, et al. (see (Ablowitz, 1991; Matveev & Salle,
1991; Hirota, 1971), et al.).

In 1993, Camassa and Holm used Hamiltonian methods to derive a new com-
pletely integrable dispersive shallow water wave equation, for which, they found
that there exists a non-smooth peaked solitary wave solution (so called peakon).
In (Rosenau & Hyman, 1994) and (Rosenau, 1997), the authors discussed “new
wave mathematics” for some new integrable systems with dispersions (for example,
K(m,n) equation). So called “new wave”, it is named by “peakon” “cuspon” and
“compacton” et al., which are different from the bell shaped solitary wave solution.
In his “concluding comments” of (Rosenau, 1997, pp318), for the understanding
to the above mentioned nonanalytic wave (i.e. “new wave”) solutions, the author
stated that “unfortunately, as we have pointed (elsewhere in 1994’s paper), a lack of
proper mathematical tools makes this goal at the present time pretty much beyond
our reach.”

Fokas (1995) stated that peakons are peaked solitons, i.e., solitons with discon-
tinuous first derivetive. Compactons are solitons with compact support. In order to
answer the above mentioned “mathematical tools” problem, i.e., to solve the ques-
tions that how to understand the dynamics of the so-called compacton and peakon
solutions? what is the reason of the smoothness change of travelling wave solutions?
how do the travelling wave solutions depend on the change of parameters of the
system? From 1998 to recent years, we have developed dynamical system method in
(Li and Liu, 2000; Li, Wu & Zhu, 2006; Li & Chen 2007; Li & Dai, 2007; Li, et al.,
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2009), which provided rigorous mathematical understanding for these “new waves”
to the singular nonlinear travelling wave systems.

Usually, the mathematical modeling of important phenomena arising in physics
and biology often leads to integrable nonlinear wave equations(PDE). Generally,
their travelling systems are ordinary differential equations (ODE). The studies of
solitons and complete integrability of nonlinear wave equations and bifurcations,
chaos of dynamical systems are two very active fields in nonlinear science. Because
a homoclinic orbit of a travelling wave system (ODE) corresponds to a solitary wave
solution of a nonlinear wave equation (PDE), while a heteroclinic orbit of a travelling
wave system corresponds to a kink wave solution of a nonlinear wave equation.
These relationships provide intersection points for the above two study fields. To
consider travelling wave solutions of a partial differential equation, the essential work
is to investigate the dynamical behavior of the corresponding ordinary differential
equations (travelling wave systems). Therefore, the theory and method of dynamical
systems play a pivotal role in the qualitative study of travelling wave solutions.

The aim of this book is to give a more systematic account for the bifurcation
theory method of dynamical systems to find exact travelling wave solutions and
their dynamics with an emphasis on the understanding of the above mentioned
“new wave” for two classes of singular nonlinear travelling equations.

The materials of this book are completely taken from published papers written
by the author, his collaborators and students. We hope that this book can serve as
a guide to what can be cleared about the dynamical ideas in studying the travelling
wave solutions of some nonlinear wave equations and for correcting some mistakes
in understanding the dynamical behavior of some exact explicit travelling wave so-
lutions.

Any reader trying to understand the subject of this book is only required to
know the elementary theory of dynamical systems and elementary knowledge of
mathematical and physical equations.

The publication of this book is supported by grant from the National Natural
Science Foundation (10831003) of China and the research foundation of the center
for dynamical systems and nonlinear studies of Zhejiang Normal University.

Li Jibin
March 10, 2013

Center for Dynamical Systems and Nonlinear
Studies, Zhejiang Normal University



Contents

Preface
Chapter 1 Some Physical Models Which Yield Two Classes of
Singular Travelling Wave Systems - -« -« «:«cccovoeeeiaieoo.. 1
1.1 Nonlinear wave equations having the first class of singular nonlinear
travelling WAvVe SYStEIS <+« -+ -« ererasennmeciiuesteiianiaanieeatas 1
1.2 Nonlinear wave equations having the second class of singular nonlinear
travelling Wave eqUALIONS <+« -+« +«x«r+ aeeeetiie ittt 19
Chapter 2 Dynamics of Solutions of Singular Travelling Systems----- 24
2.1 Some preliminary knowledge of dynamical systems:-«:«:-cccceeeeeenn. 24
2.2 Phase portraits of travelling wave systems having singular straight
i S S e s e st S s e e N TRIINEEY 29
2.3 Dynamical behavior of orbits in neighborhoods of the singular straight
line: the case of S) o are saddle points: - -« -« -+ e 41
2.4 Dynamical behavior of orbits in neighborhoods of the singular straight
line: the case of S} 5 are NOde POINES -« + -+ v vxvevereensseeneneeneaeee 58
2.5 Dynamical behavior of orbits divided by the singular curves: singular
travelling wave systems of the second class----:--ccroveecereeeecen.nn. 63
Chapter 3 Exact Travelling Wave Solutions and Their Bifurcations
for the Kudryashov-Sinelshchikov Equation -------------- .- 71
3.1 Bifurcations of phase portraits of system (3.0.4)---cccoeoeerereiaene. 72
3.2 Exact travelling wave solutions for § = —3,—4 -« +oecneeteriaiiin.... 76
3.3 Exact travelling wave solutions'for f = 1,2+ - --treeiiiiiiiianida i 82
Chapter 4 Bifurcations of Travelling Wave Solutions of Generalized
Camassa-Holm Equation (I)-:-«-cccoeeooemiai . 95
4.1 Bifurcations of phase portraits of (4.0.2) <+« +-vvaveniiiiiiiiiiiii 95
4.2 The exact parametric representations of travelling wave solutions
OF (4.0.1) v vvvvmnsvnunnnnnsnniuiiiuuusssunasannsorionsnnmasunsiannenns 104
4.3 The existence of smooth solitary wave solutions and periodic wave
dolabictstiE) el et inlil sl o Fl nuan i sty DB HRIa i) & By iewis § 111
Chapter 5 Bifurcations of Travelling Wave Solutions of Higher
Order Korteweg-De Vries Equations - -------cccvveeevnennn 114

5.1 Travelling wave solutions of the second order Korteweg-De Vries
equation in the parameter condition group (I):««:cevvrvereieneeienanns 114



iv Contents

5.2 Travelling wave solutions of the second order Korteweg-De Vries

equation in the parameter condition group (II):-«-ccevvevereneeennn. 128
5.3 Travelling wave solutions for the generalization form of modified
Korteweg-Deé Vries &quation™ - -+« bt oe vl v o B Gadds 140
Chapter 6 The Bifurcations of the Travelling Wave Solutions of
K(m,n) Equation - -+« - voeevviiiii, 166
6.1 Bifurcations of phase portraits of system (6.0.2): - ccoceeeeeeien.. 167

6.2 Some exact explicit parametric representations of travelling wave
T T DR e b S in s Bl SN oy L e e i PR e e [ et 174
6.3 Existence of smooth and non-smooth solitary wave and periodic
wave solutions ........................................................ 181
6.4 The existence of uncountably infinite many breaking wave solutions
and convergence of smooth and non-smooth travelling wave solutions as
parameters are vapled v 5 R D 1 SRV LTI ANNE, 184
Chapter 7 Kink Wave Solutions Determined by a Parabola Solution
of Planar Dynamical SyStems -« «««« -+« covverreeeeeeiiiii. 185
7.1 Six classes of nonlinear wave equations: -« -« - roeitiiiiiiiii, 185
7.2 Existence of parabola solutions of (7.1.2) and their parametric
TOPTEBOELALIONE - 7“3 -5 A s 5 5 €4 4 b HEVN LHIG18 + 30 4 63 Dne prardwibies G o 188
7.3 Kink wave solutions for 6 classes of nonlinear wave equations - ------- 192
Chapter 8 Exact Dark Soliton, Periodic Solutions and Chaotic
Dynamics in a Perturbed Generalized Nonlinear

Schrodinger EQUALION -« -« i~ asiogbacesesnssss S 197
8.1 The exact solutions of (8.0.2) for the cubic NLS equation with
O T Ry T P PR S P PP PP S 199
8.2 The exact solutions of (8.0.2) for the cubic-quintic NLS equation
with f(q) = aq+ qu ................................................. 202
8.3 The persistence of dark solition for the perturbed cubic-quintic NLS
equation (8.0.12) without the term V(z)u: - «--rcvvevereriienaiinnn.. 204
8.4 Chaotic behavior of the travelling wave solutions for the perturbed
cubic-quintic NLS equation (8.0.12) -« =« eeeerreeenmeeniieiiinian.. 205
Chapter 9 Bifurcations and Some Exact Travelling Wave Solutions
of a Generalized Camassa-Holm Equation (II)------------ 208
9.1 Bifurcations of phase portraits of (9.0.5) « -« -vcerveieeieiiiiiiin 210

9.2 Some exact travelling wave solution of (9.0.2) in the symmetry cases - - 217
9.3 The exact travelling wave solutions of equation (9.0.2) in a
non-symmetric case- { it quesns sis sl eoTamiatan 95ide 2l 1o bhanpe oo 293



Contents v

Chapter 10 Bifurcations of Breather Solutions of Some Nonlinear

Wave Equations - «(5.0.81) axeievedo aoivaded Jeolasssstl . §a 298
£0.1° Tntroduction: ¢+ v 1 {80E L eonlludos. svew arillovars ek, 84 298
10.2 Bifurcations of travelling wave solutions of system (10.1.7) when
Vap(0,7) given by (10.1.2) -« cocrsveceorresnerineinniistinaeaioroneenns 229
10.3 Travelling wave solutions of system (10.1.1) with Vgp(6,7) given
by (1001:8) 7 s s o R T L SRR LA L 234

10.4 Bifurcations of solutions of (10.1.7) with Vgp(é,) given by (10.1.3)- - 236
10.5 Travelling wave solutions of (10.1.1) with Vgp(6,r) given

BY J(L0.1.8) + v v ovrmneonesbioniontinnesmineivhes @ aiihecessnsatonie 239

10.6 Bifurcations of breather solutions of (10.1.4) -« -« vvvreeeeenrenannns 240
Chapter 11 Bounded Solutions of (n + 1)-dimensional Sine-and

S R B PN CTEROBE - -+ <<»sv 5=~ s hosstasuadasaannred 246

11.1 (n + 1)-dimensional Sine-and Sinh-Gordon equations: - -«-----«------ 246

11.2 The bounded solutions of the systems (11.1.4) and (11.1.5) -+ «------- 247

11.3 The bounded travelling wave solutions of the form (11.1.2,)

o116 5 6 1 Y e e S R R SR P e S R 255
Chapter 12 Exact Loop Solutions and Their Dynamics of Some

Nonlinear Wave EqQUations -« -« «««-««« oreeariemaiuerieens 261

121 The clowtlc Doain OquBRIONT: <> - us% <=+ ofoissmnicsssssnns inysosesie 262

12.2 The reduced Ostrovsky equation: -« «««« -« vweeereeremeeeineeinenn. 266

123 PHE ShetE piled dentbbiln " VNS RLATOR L s s s s 272

12.4 More nonlinear wave equations which have breaking loop-solutions- - - 280
Chapter 13 Exact Solitary Wave, Periodic and Quasi-periodic

Wave Solutions for the KdV6é Equations -----------cov-- 289
13.1 The equilibrium points and linearized systems of (13.0.6) ------------ 292
13.2 Exact solitary wave and quasi-periodic wave solutions of the CDG
eQUALION (13.0.12) -+ v reermnernneeiiutiiiuiiiiiniiiiiinieiinieian, 293
13.3 Exact solutions of the Kaup-Kupershmidt equation (13.0.10)::-«----- 297
13.4 Exact solutions of the KdV6 equation (13.0.2) «+«+veceeerveeeeennns 307
13.5 Exact solutions of the KdV6 equation (13.0.3) -+ --cccveeerveneenenns 311
Chapter 14 Exact Travelling Wave Solutions and Their Dynamics
for a Class Coupled Nonlinear Wave Equations --------- 315
14.1 Exact explicit solutions y = z1 (&) of (14.0.4,) when P(t) has the
factorization (14.1.1) <+« ceveerrrriie i 317
14.2 Some properties of solutions v(§) of equation (14.0.4p) - -vcvvrveeee 325
Chapter 15 On the Travelling Wave Solutions for a Nonlinear
Diffusion-convection Equation - --------ocoveeeeeeninnnn.. 327

15.1 The dynamics of the travelling wave solutions and the existence of



vi Contents

global monotonic wavefront solutions of (15.0.1) =+« cecveereeeceen.s 329
15.2 . Dynamical behavior of system (15.0.3)¢ = sariingiorens rmpasaecoereeenns 338
15.3 Exact travelling wave solutions of (15.0.3) =+ :ecererreceeeieeenin.e. 340

References ................................................................... 352



Chapter 1

Some Physical Models Which Yield Two
Classes of Singular Travelling Wave
Systems

‘The mathematical modeling of important phenomena arising in physics and biology
often leads to nonlinear wave equations. It is quite remarkable that many of these
universal equations exhibit a regular behavior, typical of integrable partial differen-
tial systems (there exist Hamiltonian structures). And their travlling wave systems
are also integrable ordinary differential equations, in which there exist some singular
properties. In this chapter, we shall address some very interesting mathematical
models which describe specific natural phenomena.

1.1 Nonlinear wave equations having the first class of singular
nonlinear travelling wave systems

Many nonlinear wave models (partial differential equations) have their travelling
wave systems in a form as follows:

d_¢ A 1 a_H d_y . _bG'(¢)y2 + F(¢) = 1 a_H (1.1.1)
i~ VT GEg) o & aG(9) G%(¢) 06 it
where £ = = — ct, a and b are real parameters,
Ho) = 3 (G@)* + - | Fo)G(e)* ao, (112)

and the functions G(¢) € C?, F(¢) € C*'(—00, 00) in order to guarantee the existence
and uniqueness of the solutions of the initial value problem.

Suppose that there is ¢ = ¢, such that G(¢s) = 0. Then, on the straight line
¢ = ¢s, the right hand of the second equation of system (1.1.1) is discontinuous. We
say that system (1.1.1) is the first class of singular travelling wave systems. On the
other hand, ¢ = ¢; is a straight line solution of the system

do

% = wG(o), j—g = —(bG'($) + F(9), (1.1.3)
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where d¢ = aG(¢)d(, for ¢ # ¢s. System (1.1.3) is called the associated regular
system of (1.1.1).

We next introduce some examples of nonlinear wave models which have the
similar travelling wave systems as (1.1.1).

1.1.1 Higher order wave equations of Korteweg-De Vries type

In 1995, A.S. Fokas proposed to study a class of physically important integrable
equations including higher order wave equations of the Korteweg-De Vries Type.
Consider the motion of ‘a two-dimensional, inviscid, incompressible fluid (water)
lying above a horizontal flat bottom located at y = —hg (ho constant), and let there
be air above the water. It turns out that, for such a system if the vorticity is zero

initially, it remains zero. We analyze only such irrotational flows. This system is
a i

characterized by two parameters, A = 51 and B = _ﬁo
0

values of the amplitude and of the wavelength of the waves. Let 1 and ¢ denote

the position of the free surface and the velocity potential, respectively. Then 7(z,t)

, where a and [ are typical

and w(z,t) where w = f; and ¢ = f:(—B)’"(l + An)®™ £2™ /(2m)! (f™ denote the

0
m-th derivative of f with respect to ) satisfy (see (Whitham, 1974))

1 1 1)
e +wz + A(w) g — Emez - §AB('r)w,m)z - §A2B(772wm)z +O(Bz) =N (.14

. il
wt+nm+Awwm+Eanmz+AB(nnm+wg)m+A2B (2n2w2 + 5772%::) +O(Bz) =0.

(1.1.5)
Suppose that O(B) is less than O(A) and the waves are unidirectional. Neglecting
terms of O(a?, a8, 3?), equations (1.1.4) and (1.1.5) yield

Nt + N + Mz + Pzsz + P12 N + aB(P2MMazz + P3NaNza)

44010z + &2 Blosn* Nozz + PeMMaTzz + p03] =0, (1.1.6)
here o 94 g B 1 5 23 1 {i 79
W = e = — =l = -, = —, = -, = = —, =
5 6 P1 6 P2 3 pP3 6 P4 ) P5 18 P6 36 P7

3—2. Neglecting terms of O(a?,af3), equation (1.1.6) reduces to the KdV equation

Nt + Nz + Nz + Pllzza = 0. (1.1.7)

Neglecting terms of O(a®,a?(3), equation (1.1.6) reduces to the “more physically
realistic form”

Nt + Mo + oMz + Bzzz + 12NNz + B(P2MMazz + P3NeMez) = 0. (1.1.8)
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We assume that p;,4 = 1 ~ 7 in (1.1.6) are considered as free parameters. Then,
(1.1.8) and (1.1.6) are called the second order and the third order wave equations of
KdV type, respectively.

A.S. Fokas also derived the following integrable generalizations of modified KdV
equation:

1
Ug + Uy + VUggr + BUgzs + quug + gau(uuzm + 2uglzg) =0 (1.1.9)
and

il
Ut + Uy + VUgzt + Bz + Quug + §au(uumz + 2UptUgy) + 3pa’ulu,

Fvpo? (WPtges +ud + Autguzs) + V2 po? (uuges + 2ugul,) = 0. (1.1.10)

First, we consider the travelling wave equation of the second order wave equations
(1.1.8) of KAV type. Lett n(z,t) = ¢(z — ct) = ¢(€), where ¢ is the wave speed and
& = z — ct, substituting ¢(x — ct) into (1.1.8), we obtain

(1 - ) + 50(6%) + 86" + z0* (%) +aB(pa(86") + 5(ps — P2)((#)?)) = O,
(1.1.11)

where “/” is the derivative with respect to £. Integrating once with respect to &, we

have the following travelling wave equation of (1.1.8)

1

3

where g is the integral constant. (1.1.12) is equivalent to the following two- dimen-

B+ apz¢)d” + %aﬂ(ps —p2)(¢)* + za%p19” + %aqs? +(1-0)¢p+g=0, (1.112)

sional system
dé _ " dy _ 3af(ps — p2)y* +20°p1° +3a4® +6(1 —c)p+g
@ 7 dE 68(1 + ap2¢) '
We next assume that ¢ = 0. Let ps = pp2, where p is a real number. Then, for

p3 # —2pa, p3 # tps ie., p# —2, p# £1, system (1.1.13) has the following first
integrals

(1.1.13)

Ao + Bog + Co¢? + Do¢p®
3p(p + 2)(p? — 1)aBp}

y? = h(1 + ap2d)' P + (1.1.14)

where

Ao =6[p3(1 —c)(p+1)(p+2)+2p1 — (p+2)p2], Bo=—a(p—1)p24o,
Co = 3p(p — 1)a?p3[2p1 — (P +2)p2], Do = —2pp1a°p3(p* - 1);

when p = —2, i.e., p3s = —2pg,

A1 + B¢ + C1¢? + 6p1(1 + 3apag + 30?p3¢?) In(1 + 2ap29)
98a2p3 :

y2 =h(l+ap29)® —
(1.1.15)
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where

Ay =11p1 —3p3(1 — ¢) = 3p2, Bi = —9a(p3(1 —c) + p3 — 3p1p2),
C1 = 9a?p§(2p1 — p2);

when p = —1, i.e., p3 = —p2,

Ag + Ba + Co¢® + D2¢® + (B2 + Fag + Ga¢?) In(1 + 2
R RO L Rt R i 6(ﬁ(;p4 26+ Ga6”) In(1 + 2ap26)
2

(1.1.16)
where

Az = —10p; — 6p2(1 —¢) +9p2, Bz = a(—8p1p2 — 12p3(1 — ¢) + 12p2),
Cz = 8a°p1p3, Do =40’p1p3, Ez=6ps —12p1,
Fp = 12a(p5 — 2p1p2), Ga = 60°(p3 — 2p1p3);

when p = 1, i.e., p3 = p2,
(1880 p3)y* + apz[4a®psd® + 3aps(3p3 — 2p1)6° + (9p5(1 — ¢) — 18ps + 12p1) 4]

—6(6p5(1 — ¢) — 3p2 — 2p1) In(1 + apagp) = h, (1.1.17)

where h is an arbitrary constant.
We see from (1.1.14) that if 1 — p = 2k(k is an integer), or p is an irrational

number, then we must consider the case 1 + apsp > 0, ie., p > pg = ———.
ap2
System (1.1.13) is a planar dynamical system defined in the 7-parameter space

(a, B,¢,p1, P2, P3, 9)-

Second, we investigate the travlling wave equation of third order wave equa-
tions (1.1.6) of KdV type. Substituting n = ¢(x — ct) into (1.1.6) and letting
y = ¢, z = ¢"(£), where “/” is the derivative with respect to &, we have the
following 3-dimensional travelling wave system:

b _ oy _
dg—y’ dg_ 7

dz _ [aB(apry® + (ps + apsd)z) + a®pag® +a?p14® +ad + (1 - )y
¢ B(L+ apa + a2ps¢?)
There are two groups of parameter conditions (I) pg = 2(p5 + p7) and (II) p7 =0
such that system (1.1.18) can be reduced to two 2-dimensional integrable systems.
We only consider the case (I). Then, we obtain from (1.1.18) that

. (1.1.18)

(1 - )8 + 50(8?) + 86" + 50 (8°) + aB(pa(86") + 5B(ps — p2) ()7

+%asp4(¢4)' +a?B(ps(¢°¢") + pr(6(¢)?)') = 0. (1.1.19)
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Integrating once with respect to £, we have the following travelling wave equation
of (1.1.6)

B(1 + aped + o ps¢?)d” + (%aﬁ(ps —p2) + 025P7¢> (¢)?
1
4

where we take the integral constant g = 0. (1.1.20) is equivalent to the following
two-dimensional system

d¢ oo hteie: 6B((p3 —p2)+2apr¢)y® +30° psd* +402p1° +6a¢>+12(1 — c)p

1 1
+=alpadt + §a2p1¢3 + 5a¢2 +(1-¢c)p=0, (1.1.20)

¢ " dt 128(1 + ap26 + a2p5¢?)
(1.1.21)
Write that
S(¢) = 1 + apagp + a®psd?, (1.1.22)
F(¢) = f(¢)¢ = (3a®psd® + 40 p14* + 62 + 12(1 — ¢))¢. (1.1.23)
Thus, (1.1.21) can be rewritten to the form
dé _ 4 dy _ _6aB((ps — p2) + 20p19)y* + F(9) 1

¢~ 7 dg 128S(¢)

Clearly, system (1.1.21) is a planar dynamical system defined in the 10-parameter
space (e, 3¢, pi),i = 1 — 7. Corresponding to different parameter subspace, it has
different rich and complicated dynamical behavior.

The system (1.1.21) has a first integral for p3 — 4p5 > 0,

y25(9)% exp (Aartanh (M))

vV ,0% —4ps
1 J‘ PT_4q P2 + 2aps¢
+— | S(¢)?s "' F(¢) exp | —Aartanh [ 228 ) ) dg = b (1.1.25)
5 g o
2[ps(p2 — p3) + p2pr] 5
where A = ; for p5 — 4ps < 0,
s/ p3 — 4ps ?
y2S(¢)§% exp (—iAarctan (M%Y—psf))
Vaps — p3
! J £y ; p2 + 2ap5¢
+— | S(¢)?s " F(¢)exp | 1Aarctan | ———s d¢ = h; (1.1.26)
64 V4ps — p3

and for p2 — 4ps = 0,

2 3 4[p2(p2 — p3) + 4P7])
Rk eml TER ( P3(2 + apa9)
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8p7 —203
+% JF(¢)(2 i g (4[”"”%"(22 +‘:2);)4”7])d¢ =5 Y9y
We see form (1.1.26) and (1.1.27) that to obtain an explicit integral formula for
general parameters p;, ¢ = 1 ~ 7, it is very difficult.
Notice that the right hands of the second equations of (1.1.13),(1.1.21) are not
continuous when
1+ aps¢ =0, (1.1.28)

1+ apag + a2 psp? =0, (1.1.29)

respectively. Therefore, we need to find the essential difference of the dynamical
behavior between discontinuous systems and continuous systems.

1.1.2 Camassa-Holm equation and its generalization forms

In 1993, Camassa and Holm used Hamiltonian methods to derive a new completely
integrable dispersive shallow water wave equation

U + 2kUy — Uggt + SUUL = 2UglUpy + Ulggy, (1.1.30)

where u is the fluid velocity in the z direction (or equivalently the height of the
water’s free surface above a flat bottom), k is a constant related to the critical
shallow water wave speed, and subscripts denote partial derivatives. This equation
retains higher order terms (the right-hand of (1.1.30)) in a small amplitude expansion
of incompressible Euler’s equations for unidirectional motion of waves at the free
surface under the influence of gravity. Dropping these terms leads to the Benjamin-
Bona-Mahoney (BBM) equation

Ug + Uy — Ugpt + Uy = 0, (1.1.31)

or at the same order, the KdV equation (1.1.7). Now, equation (1.1.30) is called
Camassa-Holm (CH) equation.
In recent years, CH equation has been generalized to the following GCH equation:

1
ut + 2kuy — Uggr + -2-[f(u)]z S Ui Ul ey (1.1.32)
2
where f(u) is a function of u. Specially, for f(u) = m—j_lum“, we have the so

called modified Camassa-Holm (or mCH) equation
Ut + 2kUy — Ugzt + U™ Uy = 2UzlUgy + Ulpgg. (1.1.33)
Dai & Huo (2000) derived the following far-field model equation

Ut + 3utly — Uggt — Y (2UzlUgy + Ulggy) =0 (1.1.34)
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for finite-length small-but-finite-amplitude waves in a prestretched rod composed
of a compressible hyperelastic material when the material constant and prestress
satisfy a given condition.

In 2001, Dullin et al. considered a generalized CH equation

us + Cotig + 3utly — 02 (Ugpgt + Vlgpgr + 2UzUzs) + Ytzzz = 0, (1.1.35)

which is called CH-vy equation. Here a,co and « are constants, and a # 0. The CH-y
equation becomes the CH equation when a2 = 1, ¢y = 2k and v = 0.

In 1999, a new variant of (1.1.30) has been introduced by Degasperis and Procesi
as

myg + umg + buzm = couz — YUzzz,

' which is called the CH-DP equation. Here m = u — au,, is a momentum variable,
@, cp, b,y are constants and « # 0. Clearly, the CH-DP equation can be rewritten as

ug — otz + (b + Dury — 02 (Upet + Ulgzs + Duzlizs) + Yigze = 0. (1.1.36)

Evidently, the CH-DP equation becomes the CH-y equation when b=2. We see from
(1.1.36) that CH-DP equation has one more parameter than CH-v equation.

We look for travelling wave solutions of (1.1.36) in the form of u(z,t) = ¢(z —
ct) = ¢(§), where c is the wave speed and & = z — ct. Substituting ¢(z — ct) into
(1.1.36), we obtain

—(c+co)d' + (b+1)pd — a*(¢¢" +bd'¢") + (@®c +7)¢" =0, (1.1.37)

where “7” is the derivative with respect to £. Integrating (1.1.37) once with respect
to &, we have the following travelling wave equation of (1.1.36)

~(c+a)p+ 36+ 16" - (@76 —alc—)¢" - J(b-1a’(#)’ +9=0,  (1.138)

where g is the integral constant. (1.1.38) is equivalent to the following two-
dimensional system

dp _  dy _ —3(b—1)a’y?+3(b+1)¢? — (c+co)p +9g

dg_'y’ dg_ a2¢—a2c—’y .
We next assume that g = 0. Then, system (1.1.39) has the following first integrals
forsb2 0, A=l

(1.1.39)

Ap + By + Cop?
b(b—1)ab '

y? = h(e?p—a?c—y)'"0 + (1.1.40)

where

Ao = —2(a’c+19)(a®cp —7), Bo=-22°(b—1)(a*co—7), Co=>b(b—1)a%;
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when b = 0,

y? =h(a?¢ — o’c— )
" A1+ B1¢+C1¢% +2(y—a?cp) (a?p—alc—7)in(a?p—a’c—7)
b

. (1.1.41)
where
Ay = ae(c+ 2¢0) + v(20%co — ), B1 = a?(a®c+7), Cp=oa

when b =1,

4 Asd + Bag? — 2(a’c+ v)(a?co — v)In(a?¢p — a’c — )

Qi I
y_h as

. (1.1.42)
where Ay = —2a?(a%co — ), Bs = a*. h is an arbitrary constant.
We see from (1.1.40) that if 1 — b = 2k, (k is an integer) or b is an irrational
olc+y
a?
System (1.1.39) is a planar dynamical system defined in the 6-parameter space
(b1 ¢, Co, @, 7, g)
Similarly, for the equation (1.1.32), we have its travelling wave equation

1

(6= 8" =~ (@) + 37 + 2k~ Ip+g, (114)

number, then we must consider the case a?¢ —a?c—v > 0, ie., ¢ > ¢ =

where “/” is the derivative with respect to £. We write (1.3.14) as the differential
equation system

dp _ dy =y’ +29+2(2k—c)d+ f(¢)

e TPl e 256 =0 , (1.1.44)
which has the following first integral
H($,y) = (6 — )y — (299 + (2k — ¢)¢* + F(¢)) = h, (1.1.45)

¢
where F(¢) = L f(u)du.

We next consider the following so called fully nonlinear Camassa-Holm equation
C(m7 nap) tug + kufc s ﬁluzzt = ,32 (um)x 7k ﬂBUm (un)zz i+ ﬁ4u(up)a:a::c == 0, (1146)

where m,n,p € Z* and k, 8;,i = 1 ~ 4 are real parameters. Taking different m,n,p
and k, 3;, this equation contains the above known equations as special examples.
Let u(z,t) = ¥(z — ct) = (&) (1.1.46) reduces to

(k=)' — Bicy” + Ba(™) + B3y’ (™) + Bap(¥P)" =0, (1.1.47)



