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Preface

Group cohomology reveals a deep relation between algebra and topology. A
group determines a topological space in a natural way, its classifying space.
The cohomology ring of a group is defined to be the cohomology ring of its
classifying space. The challenges are to understand how the algebraic properties
of a group are related to its cohomology ring, and to compute the cohomology
rings of particular groups.

A fundamental fact is that the cohomology ring of any finite group is finitely
generated. So there is some finite description of the whole cohomology ring
of a finite group, but it is not clear how to find it. A central problem in group
cohomology is to find an upper bound for the degrees of generators and relations
for the cohomology ring. If we can do that, then there are algorithms to compute
the cohomology in low degrees and therefore compute the whole cohomology
ring.

Peter Symonds made a spectacular advance in 2010: for any finite group
G with a faithful complex representation of dimension »n at least 2 and any
prime number p, the mod p cohomology ring of G is generated by elements of
degree at most n? [130]. Not only is this the first known bound for generators of
the cohomology ring; it is also nearly an optimal bound among arbitrary finite
groups, as we will see.

This book proves Symonds’s theorem (Corollary 4.3) and several new vari-
ants and improvements of it. Some involve algebro-geometric analogs of the
cohomology ring. Namely, Morel-Voevodsky and I independently showed how
to view the classifying space of an algebraic group G (e.g., a finite group) as
a limit of algebraic varieties in a natural way. That allows the definition of the
Chow ring of algebraic cycles on the classifying space BG [107, proposition
2.6]; [138]. A major goal of algebraic geometry is to compute the Chow ring for
varieties of interest, since that says something meaningful about all subvarieties
of the variety.

xi
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the analogous very strong bound for the cohomology ring of a finite group mod-
ulo transfers from proper subgroups, and we give a version of his argument
(Corollary 10.3).

In examples, the Chow ring of a finite group G always turns out to be simpler
than the cohomology ring, and it seems to be closely related to the complex
representation theory of G. In that direction, I conjectured that the Chow ring
of any finite group was generated by transfers of Euler classes (top Chern
classes) of complex representations [138]. That was disproved by Guillot for a
certain group of order 27, the extraspecial 2-group 21+ [62]. It would be good
to find similar examples at odd primes. Nonetheless, the theorem on the Chow
ring modulo transfers gives a class of p-groups for which the question has a
positive answer. Namely, the Chow ring of a p-group with a faithful complex
representation of dimension at most p + 2 consists of transferred Euler classes
(Theorem 11.1). This includes all 2-groups of order at most 32, and all p-groups
of order at most p* with p odd.

We extend Symonds’s theorem on the Castelnuovo-Mumford regularity of
the cohomology ring to the Chow ring of the classifying space of a finite group
(Theorem 6.5). We also bound the regularity of motivic cohomology (Theorem
6.10). It follows, for example, that all our bounds on generators for the Chow
ring also lead to bounds on the relations. In each case, our upper bound for
the degree of the relations is twice the bound for the degree of the generators.
Another application is an identification of the motivic cohomology of a clas-
sifying space BG in high weights with the ordinary (or etale) cohomology.
This statement goes beyond the range where motivic cohomology and etale
cohomology are the same for arbitrary varieties, as described by the Beilinson-
Lichtenbaum conjecture.

Let G be a finite group with a faithful complex representation of dimension 7.
Chapter 12 shows that the cohomology of G is determined by the cohomology
of certain subgroups (centralizers of elementary abelian subgroups) in degrees
less than 2n. This was conjectured by Kuhn, who was continuing a powerful
approach to group cohomology developed by Henn, Lannes, and Schwartz
[86, 69]. We also prove an analogous result for the Chow ring: the Chow ring
of a finite group is determined by the cohomology of centralizers of elementary
abelian subgroups in degrees less than n. This is a strong computational tool,
in a slightly different direction from the bounds for degrees of generators. The
proof is inspired by Kuhn’s ideas on group cohomology.

For a finite group G, Henn, Lannes, and Schwartz found that much of the
complexity of the cohomology ring of G is described by one number, the “topo-
logical nilpotence degree” d, of the cohomology ring. This number is defined
in terms of the cohomology ring as a module over the Steenrod algebra, but it is
also equal to the optimal bound for determining the cohomology of G in terms
of the low-degree cohomology of centralizers of elementary abelian subgroups.
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Section 13.5 gives the first calculations of the topological nilpotence degree d
for some small p-groups, such as the groups of ordef p>. In these examples,
dp turns out to be much smaller than known results would predict. Improved
bounds for dp would be a powerful computational tool in group cohomology.

To understand the cohomology of finite groups, it is important to compute the
cohomology of large classes of p-groups. The cohomology of particular finite
groups such as the symmetric groups and the general linear groups over finite
fields F (with coefficients in F, for p invertible in F) were computed many
years ago by Nakaoka and Quillen. The calculations were possible because
the Sylow p-subgroups of these groups are very special (iterated wreath prod-
ucts). To test conjectures in group cohomology, it has been essential to make
more systematic calculations for p-groups, such as Carlson’s calculation of
the cohomology of all 267 groups of order 2° [26, appendix]. More recently,
Green and King computed the cohomology of all 2328 groups of order 27 and
all 15 groups of order 3* or 5* [51, 52]. In that spirit, we begin the systematic
calculation of Chow rings of p-groups. Chapter 13 computes the Chow rings
of all 5 groups of order p* and all 14 groups of order 16. Chapter 14 computes
the Chow ring for all 15 groups of order 3* = 81, and for 13 of the 15 groups of
order p* with p > 5. Most of the proofs use only Chow rings, but the hardest
cases also use calculations of group cohomology by Leary and Yagita.

One tantalizing example for which the Chow ring is not yet known is the
group G of strictly upper triangular matrices in GL(4, F,), which has order
pS. The machinery in this book should at least make that calculation easier.
For p odd, Kriz and Lee showed that the Morava K-theory K(2)*BG is not
concentrated in even degrees, disproving a conjecture of Hopkins, Kuhn, and
Ravenel [83, 84]. It seems to be unknown whether the complex cobordism of
BG is concentrated in even degrees in this example. Until this is resolved,
it remains a possibility that the Chow ring of BG may map isomorphically
to the quotient MU*(BG) @ yy+ Z of complex cobordism for every complex
algebraic group G (including finite groups), as conjectured in [138]. Yagita
strengthened this conjecture to say that algebraic cobordism Q*BG should
map isomorphically to the topologically defined MU*BG for every complex
algebraic group G [154, conjecture 12.2].

Chapter 15 gives examples of p-groups for any prime number p such that
the geometric and topological filtrations on the complex representation ring are
different. When p = 2, Yagita has also given such examples [156, corollary
5.7]. A representation of G determines a vector bundle on BG, and these two
filtrations describe the “codimension of support” of a virtual representation
in the algebro-geometric or the topological sense. Atiyah conjectured that the
(algebraically defined) y-filtration of the representation ring was equal to the
topological filtration [6], but that was disproved by Weiss, Thomas, and (for
p-groups) Leary and Yagita [93]. Since the geometric filtration lies between the
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y and topological filtrations, the statement that the geometric and topological
filtrations can be different is stronger. The examples use Vistoli’s calculation of
the Chow ring of the classifying space of PG L(p) for prime numbers p [143].

Chapter 16 constructs an Eilenberg-Moore spectral sequence in motivic
cohomology for schemes with an action of a split reductive group. The spec-
tral sequence was defined by Krishna with rational coefficients [82, theorem
1.1]. We give an integral result, as far as possible. The Eilenberg-Moore spec-
tral sequence in ordinary cohomology is a basic tool in homotopy theory.
Given the cohomology of the base and total space of a fibration, the spectral
sequence converges to the cohomology of a fiber. The reason for including the
motivic Eilenberg-Moore spectral sequence in this book is to clarify the relation
between the classifying space of an algebraic group and its finite-dimensional
approximations.

Finally, Chapter 17 considers the Chow Kiinneth conjecture: for a finite group
G and a field k containing enough roots of unity, the natural map CH* BG; ®z
CH*X — CH*(BGy x X) should be an isomorphism for all smooth schemes
X over k. This would in particular imply that the Chow ring of BGg is the
same for all field extensions K of k. Although there is no clear reason to
believe the conjecture, we prove some partial results for arbitrary groups, and
prove the second version of the conjecture completely for p-groups with a
faithful representation of dimension at most p + 2. Chapter 18 is a short list of
open problems. The Appendix tabulates several invariants of the Chow rings
of p-groups of order at most p*.

I thank Ben Antieau and Peter Symonds for many valuable suggestions.
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1

Group Cohomology

This chapter gives the topological and algebraic definitions of group cohomol-
ogy. We also define equivariant cohomology.

Although we give the basic definitions, a beginner may have to refer to other
sources. Brown [24] is an excellent introduction to group cohomology. Group
cohomology is also treated in general texts on homological algebra such as
Weibel [149]. Some of the main advanced books on the cohomology of finite
groups are Adem-Milgram [1], Benson [12], and Carlson [26].

Group cohomology unified many earlier ideas in algebra and topology. It
was defined in 1943-1945 by Eilenberg and MacLane, Hopf and Eckmann,
and Freudenthal.

1.1 Definition of group cohomology

Group cohomology arises from the fact that any group determines a topological
space, as follows. Let G be a topological group. The special case where G is
a discrete group is a rich subject in itself. Say that G acts freely on a space X
ifthemap G x X - X x X, (g, x) > (x, gx), is a homeomorphism from
G x X onto its image. By Serre, if a Lie group G acts freely on a metrizable
topological space X, then the map X — X/ G is a principal G-bundle, meaning
that it is locally a product U x G — U [109, section 4.1].

There is always a contractible space EG on which G acts freely. The classi-
Jfying space of G is the quotient space of EG by the action of G, BG = EG/G.
Any two classifying spaces for G that are paracompact are homotopy equiva-
lent [72, definition 4.10.5, exercise 4.9]. If G is a discrete group, a classifying
space of G can also be described as a connected space with fundamental group
G whose universal cover is contractible, or as an Eilenberg-MacLane space
K(G,1).



2 Group Cohomology

The cohomology of the classifying space of a topological group G is well-
defined, because the classifying space is unique up to homotopy equivalence.
In particular, for any commutative ring R, the cohomology H*(BG, R) is a
graded-commutative R-algebra that depends only on G. For a discrete group
G, we call H*(BG, R) the cohomology of G with coefficients in R; confusion
should not arise with the cohomology of G as a topological space, which is
uninteresting for G discrete. A fundamental challenge is to understand the
relation between algebraic properties of a group and algebraic properties of its
cohomology ring.

The cohomology of a group G manifestly says something about the coho-
mology of certain quotient spaces. More generally, for any space X on which
G acts freely, there is a fibration

X - (X x EG)/G - BG,

where the total space is homotopy equivalent to X/G. The resulting spec-
tral sequence H*(BG, H*X) = H*(X/G), defined by Hochschild and Serre,
shows that the cohomology of G gives information about the cohomology of
any quotient space by G.

Another role of the classifying space of a group G is that it classifies principal
G-bundles. By definition, a principal G-bundle over a space X is a space E
with a free G-action such that X = E/G. The classifying space BG classifies
principal G-bundles in the sense that for any CW-complex X, there is a one-to-
one correspondence between isomorphism classes of principal G-bundles over
X and homotopy classes of maps X — BG. (Explicitly, we have a “universal”
G-bundle EG — BG,and amap f: X — BG defines a G-bundle over X by
pulling back: let E be the fiber product X xpc EG.)

Therefore, computing the cohomology of the classifying space gives infor-
mation about the classification of principal G-bundles over an arbitrary space.
Namely, an element u € H'(BG, R) gives a characteristic class for G-bundles:
for any G-bundle E over a space X, we get an element u(E) € H'(X, R), by
pulling back u via the map X — BG corresponding to E.

A homomorphism G — H of topological groups determines a homotopy
class of continuous maps BG — B H. For example, we can view this as the
obvious map (EG x EH)/G — EH/H = BH. As aresult, given a commu-
tative ring R, ahomomorphism G — H determines a “pullback map” on group
cohomology:

H*(BH,R) > H*(BG, R)
Example The classifying space of the group Z /2 can be viewed as the infinite

real projective space RP™ = U,>oRP". Its cohomology with coefficients in the
field F, = Z/2 is a polynomial ring,

H*(BZ/2, Fy) = Fy[x],



