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PREFACE

This book is a revision of lecture notes for a course on stochastic differential
equations (SDE) that I have taught several times over the past decades at
the University of Maryland, the University of California, Berkeley, and the
Mathematical Sciences Research Institute.

My intention has been to survey, honestly but with some omission of
precise detail, the basics of the It stochastic calculus and the foundations of
stochastic differential equations, with particular emphasis upon applications
to partial differential equations (PDE).

I assume my readers to be fairly conversant with measure-theoretic
mathematical analysis but do not assume any particular knowledge of prob-
ability theory (which I develop very rapidly in Chapter 2). I downplay most
measure theory issues but do emphasize the probabilistic interpretations. 1
“prove” many formulas by confirming them in easy cases (for simple random
variables or for step functions) and then just stating that by approximation
these rules hold in general. This whirlwind introduction is of course no
substitute for a solid graduate level course in probability; but this book
should provide enough background and motivation for students who lack
the preparation to tackle the standard SDE text Qksendal [O].

Thanks to my colleague Fraydoun Rezakhanlou, who has taught from
these notes and added several improvements, and to Lisa Goldberg, who
several years ago gave my class with several lectures on financial applications.
Jonathan Weare provided several computer simulations illustrating the text.
Thanks also to many readers of the online version who have found errors,
especially Robert Piche, who provided me with an extensive list of typos
and suggestions.
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viii PREFACE

For this printing as a book, the notes have been retyped and reformatted;
I have also updated the references and made many improvements in the
presentation. I have, as usual, received great help from everyone at the
American Mathematical Society, especially Sergei Gelfand, Stephen Moye,
Arlene O’Sean, Tom Costa and Chris Thivierge.

I will post a list of errors on my homepage, accessible through the
math.berkeley.edu website.

I have been supported by the NSF during the writing of this book, most
recently by the grants DMS-1001724 and DMS-1301661.

LCE
July 2013
Berkeley
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Chapter 1

INTRODUCTION

1.1. DETERMINISTIC AND RANDOM DIFFERENTIAL

EQUATIONS
Fix a point z¢g € R™ and consider then the ordinary differential equation
x(t) = b(x(t t
—_ (1) = b(x(1)) (t>0)
x(0) = =,

where b : R® — R" is a given smooth vector field and the solution is the
trajectory x : [0,00) — R™, where x = x(t) is a function of time ¢. The dot
means differentiation: * = %.

x(t)
X0

Trajectory of the differential equation ODE

We call x(t) the state of the system at time ¢ > 0. Under reasonable
assumptions on the vector field b, the ordinary differential equation (ODE)
has a solution, uniquely determined by the initial condition zg.

In many applications, however, the experimentally measured trajectories
of systems modeled by (ODE) do not in fact behave as predicted: the ob-
served state seems to more or less follow the trajectory predicted by (ODE),
but is apparently subject also to random perturbations.
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2 1. INTRODUCTION

X(t)

Trajectory of a stochastic differential equation (SDE)

Hence it seems reasonable to modify (ODE), somehow to include the possi-
bility of random effects disturbing the system. A formal way to do so is to
write

(1) X(t) = b(X (1)) + BX(1)&(t) (¢ > 0)
X(0) = o,

where

B :R" - M™*™ (= space of n X m matrices)

and

£(+) := m-dimensional “white noise”.

We then have these mathematical problems:

e Define “white noise” £(-).
e Define what it means for X(-) to solve (1).

e Show that (1) has a solution and discuss uniqueness, asymptotic
behavior, dependence upon zg, b, B, etc.

This book develops the rigorous mathematical theory to address these and
many related questions.

1.2. STOCHASTIC DIFFERENTIALS

Let us first study (1) in the case m =n, g = 0, b = 0, and B = I. The
solution in this setting turns out to be n-dimensional Brownian motion (or
Wiener process), denoted W (-). Thus we may symbolically write

(2) W()=£0),
thereby asserting that “white noise” is the time derivative of Brownian mo-
_tion.—
Now return to the general form of equation (1), write % instead of the

dot:

%ﬁ” = b(X(t)) + B(X(t))

dW (1)
at




1.3. ITO’S CHAIN RULE 3

and formally multiply by “dt”:
dX(t) = b(X(t))dt + B(X(t))dW(t)
{ X(0) = xo.
The terms “dX” and “BdW?” are called stochastic differentials, and the
expression (SDE), properly interpreted, is a stochastic differential equation.
We say that X(-) solves (SDE) provided

(SDE)

(3) X(t)==z0+ /Ot b(X(s))ds + /Ot B(X(s))dW  for all times t > 0.

To make sense of all this, we must:
e Construct Brownian motion W(:): see Chapter 3.
e Define the stochastic integral fot ---dW : see Chapter 4.
e Show that (3) has a solution, etc.: see Chapter 5.

And once all this is accomplished, there will still remain these modeling
problems:

e Does (SDE) truly model the physical situation?

e Is the term £(-) in “really” white noise or is it rather some en-

As we will see later, these questions are subtle, and different answers can
yield completely different solutions of (SDE).

1.3. ITO’S CHAIN RULE

Part of the trouble is the strange form of the chain rule in the stochastic
calculus. To illustrate this, let us assume n = m = 1 and X(-) solves the
SDE

(4) dX = b(X)dt + dW.

Suppose next that u : R — R is a given smooth function, u = u(x). We ask:
what stochastic differential equation does

Y(t):=u(X() (t=0)
solve? Offhand, we would guess from (4) that
dY = u'dX = u/bdt + u'dW,

according to the usual chain rule, where ' = %.

This is wrong, however! In fact, as we will later see, Brownian motion
is so irregular that

(5) AW & (dt)'/?



4 1. INTRODUCTION

in some heuristic sense. Consequently if we compute dY and keep all terms
1
of order dt or (dt)2, we obtain from (4) that

dY =u'dX + %u”(ch)2 e
= o/(bdt + dW) + %u”(bdt +dW)2 4.
= (u'b - %u") dt + u'dW + {terms of order (dt)*/? and higher}.
Here we used the “fact” that (dW)? = dt, which follows from (5). Hence

1
(6) du(X) = (u'b + §u”> dt + u'dW,

with the extra term “Zu”dt” not present in ordinary calculus.. 2

The strange looking expression (6) is an instance of [t6’s chain rule, also
known as Ité’s formula. A major goal of this book is to provide a rigorous
interpretation for calculations like these, involving stochastic differentials.

EXAMPLE 1. According to It6’s chain rule (6), the solution of the sto-
chastic differential equation
dYy =Ydw
Y(0)=1
is
Y(t) = eV W3
and not what might seem the obvious guess, namely Y(t) =W, 0

EXAMPLE 2. Let S(t) denote the (random) price of a stock at time
t > 0. A standard model assumes that %S, the relative change of price,
evolves according to the SDE

% = pdt + odW

for certain constants g > 0 and o, called respectively the drift and the
volatility of the stock. In other words,

dS = pSdt + o SdW
S(0) = sy,

where sq is the starting price. Using Itd’s chain rule (6) once again, we can
check that the solution is

S(t) = SOGUW(t)-F(,u—%)t.

We will return to this example several times later. 0
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Chapter 2

A CRASH COURSE
IN PROBABILITY
THEORY

This chapter is an extremely rapid introduction to the measure-theoretic
foundations of probability theory. See the Notes and Suggested Reading
at the back of the book for recommendations of good textbooks that can
provide full details of the proofs that we will sometimes omit.

2.1. BASIC DEFINITIONS

Let us begin with a puzzle:

2.1.1. Bertrand’s paradox. Take a circle of radius 2 inches in the plane
and choose a chord of this circle at random. What is the probability this
chord intersects the concentric circle of radius 1 inch?

Solution #1. Any such chord (provided it does not hit the center) is uniquely
determined by the location of its midpoint:

\II



8 2. A CRASH COURSE IN PROBABILITY THEORY

Thus

fi ircl 1
probability of hitting the inner circle = area o Tnner c1'rc ==
area of larger circle 4

Solution #2. By symmetry under rotation we may assume the chord is
vertical. The diameter of the large circle is 4 inches and the chord will hit
the small circle if it falls within its 2-inch diameter:

Hence
2 inches 1

4 inches 2’

Solution #3. By symmetry we may assume one end of the chord is at the
far left point of the larger circle. The angle # that the chord makes with
the horizontal lies between +7, and the chord hits the inner circle if 6 lies
between +%:

probability of hitting the inner circle =

Therefore

probability of hitting the inner circle =

ol
Il
OD.I —
O

2.1.2. Probability spaces. Bertrand’s paradox shows that we must care-
fully define what we mean by the term “random”. The correct way to do so is
by introducing as follows the precise mathematical structure of a probability
space.

We start with a nonempty set, denoted €2, certain subsets of which we
will in a moment interpret as being “events”.



