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Preface

For more than five decades, the methods of surface physics and chemistry have
provided some of the most incisive results advancing our understanding of the
catalytic action of solids at the molecular scale. Characterizations by physical
methods have demonstrated the dynamic nature of catalyst surfaces, showing that
their structures, compositions, and reactivities may all be sensitive to temperature
and the composition of the reactive environment. Thus, the most insightful catalyst
characterizations are those of catalysts as they function. This volume of Advances in
Catalysis is dedicated to the topic of physical characterization of solid catalysts in
the functioning state. Because the literature of this topic has become so extensive,
the representation will extend beyond the present volume to the subsequent two
volumes of the Advances.

The literature of this subject has generated its share of jargon, which has been
held to a minimum in the following contributions. The term in-situ is widely used to
describe catalyst characterization experiments, but with inconsistent meanings. We
suggest that it might be best to use this term to describe experiments with strict
control of all parameters that might affect the surface properties of a catalyst,
whether or not a catalytic reaction may be operative. We have preferred to min-
imize use of this term and to refer explicitly to functioning, working, or operating
catalysts when appropriate. Alternatively, the term operando has been applied (e.g.,
B. M. Weckhuysen, Phys. Chem. Chem. Phys. 5, 4351 (2003)) to the characteri-
zation of catalysts by spectroscopic methods with simultaneous measurements of
catalytic activity (and/or selectivity and/or stability). Unfortunately, many authors
have used this term more loosely, for example, without reporting any catalyst
performance data, and it seems to be at risk of becoming as vague in usage as “in
situ;” we largely avoid it in this set of volumes.

It is generally desirable to integrate measurements representing a working cat-
alyst surface with measurements that characterize the activity, selectivity, and/or
stability of the catalyst, such as can be determined by use of gas chromatography or
mass spectrometry of products. It is important to keep in mind that when a reactor
is designed to serve optimally as a cell for measurements of catalyst surface prop-
erties, it may not be the kind of ideal reactor that would provide activity, selectivity,
or stability data that can be interpreted fundamentally in terms of kinetics and
chemical reaction engineering.

xiii



Xiv Preface

The growing interest in physical characterization of solid catalysts as they func-
tion has stimulated a new series of congresses, the first held in Lunteren (The
Netherlands) in 2003 and the second in Toledo in 2006. The subject has been
documented in recent books (B. M. Weckhuysen, Ed., ““In situ Spectroscopy of
Catalysts,” American Scientific Publishers, 2004, and J. F. Haw, Ed., “In situ
Spectroscopy in Heterogeneous Catalysis,” Wiley-VCH, 2002) and in topical issues
of journals: Top. Catal. 15 (2001); Phys. Chem. Chem. Phys. 5, issue 20 (2003); and
Catal. Today 113 (2006). It is our intention that our set of volumes be more nearly
comprehensive than these publications, as well as providing many newer results.

In the present volume, Gladden, Mantle, and Sederman summarize the appli-
cation of magnetic resonance imaging techniques to represent both local flow fields
in reactors containing solid catalyst particles and conversions within model reac-
tors. The techniques provide a non-invasive, chemically specific measurement tech-
nique that leads to representation of a reactor over length scales ranging from
Angstroms to centimeters.

Hansen, Helveg, and Datye report on atomic-scale imaging of supported metal
nanocluster catalysts in the working state. High-resolution transmission electron
microscopy allows atomic-resolution imaging of transition metal catalysts during
exposure to reactive gases at elevated temperatures, providing insights into the
structure, morphology, and dynamics of supported catalysts with various surfaces
and interfaces as they function. Examples include evidence of the location of a
barium promoter in a ruthenium catalyst for ammonia synthesis and environment-
induced morphology changes in supported copper catalysts for methanol synthesis.

Lauritsen and Besenbacher summarize research on model catalyst surfaces in-
vestigated by scanning tunneling microscopy (STM). They show atomic-scale in-
formation obtained by STM elucidating the formation of surface alloys; wetting;
blocking of reactive step edges; and identification of electronic states at the edges of
nanoclusters. These results have helped to guide the preparation of new high-
surface-area catalysts.

Hunger and Wang provide an account of advances in the characterization of
solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy.
Examples include investigations of zeolite-catalyzed reactions with isotopic labels
that allow characterization of transition states and reaction pathways as well as
characterization of organic deposits, surface complexes, and reaction intermediates
formed in catalyst pores.

Biirgi and Baiker summarize progress in the application of attenuated total re-
flection infrared spectroscopy for investigation of solid catalysts functioning in the
presence of liquid-phase reactants. The technique allows the detection of liquid-
phase products and the investigation of species adsorbed on catalysts during re-
action, even in the presence of strongly adsorbing solvents. Under some conditions,
changing catalyst structures can be investigated with this technique.

H. KNOZINGER
B. C. GATES
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Magnetic Resonance Imaging of
Catalysts and Catalytic Processes

L. F. GLADDEN, M. D. MANTLE and A. J. SEDERMAN

Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge CB2 3RA,
UK

Magnetic resonance (MR), in the form of solid-state nuclear magnetic resonance (NMR)
spectroscopy, is well established as a research tool for investigations of the structures of solid
catalysts and molecular species adsorbed on them. However, during the past decade there has
been increasing interest in using magnetic resonance imaging (MRI) techniques to study, in
particular, flow fields inside reactors. These studies have recently been extended to measurements
of chemical conversion within model reactor systems. The real power of MR techniques is that by
bringing together spectroscopy, diffusion, micro-imaging, and flow imaging, they provide a non-
invasive, chemically specific measurement technique which can characterize a system over length
scales ranging from the angstrom- to the centimeter scale. In this review, recent developments in
MRI pulse sequences are summarized and applications to investigations of both hydrodynamics
and catalytic conversion within catalysts and catalytic reactors are presented.

Materials: 2M2B; 2-methyl-2-butene; HZSM-5; zeolite with MFI framework (IUPAC nomenclature);
NaCaA; zeolite with LTA framework (IUPAC nomenclature); NaX; zeolites with FAU framework
(IUPAC nomenclature); Pd/AlLO;; alumina supported palladium catalyst; TAME; tert-amyl methyl
ether or 2-methoxy-2-methylbutane; TAOH; tert-amyl alcohol or 2-methyl-butan-2-ol

Abbreviations: BET; Brunauer Emmett Teller; adsorption isotherm model; BLIPPED EPI; MR pulse
sequence; CFD; computational fluid dynamics; CSI; chemical shift imaging; MR pulse sequence;
DANTE: delays alternating with nutations for tailored excitation; MR pulse sequence; DANTE TOF;
delays alternating with nutations for tailored excitation time of flight; MR pulse sequence; DEPT;
distortionless enhancement by polarization transfer; MR pulse sequence; EPI; echo planar imaging; MR
pulse sequence; FID; free induction decay; FLASH; fast low-angle shot; MR pulse sequence; FSE; fast
spin echo; MR pulse sequence; GERVAIS; gradient echo rapid velocity and acceleration imaging
sequence; MR pulse sequence derived from EPI; GRASE; gradient and spin echo; MR pulse sequence;
MBEST-EPI: modulus blipped echo planar single-pulse technique; MR pulse sequence derived from EPI;
MR; magnetic resonance; MRI; magnetic resonance imaging; NMR; nuclear magnetic resonance; Pe;
dimensionless group characterizing flow; PEPI, n-EPI; MR pulse sequence derived from EPI; PFG;
pulsed field gradient; MR pulse sequence; PGSE; pulsed gradient spin echo; MR pulse sequence; RARE;
rapid acquisition with relaxation enhancement; MR pulse sequence; Re; Reynolds number; dimensionless
group characterizing flow; REPI; radial EPI; MR pulse sequence derived from EPI; SEMI-RARE; single
excitation multiple image rapid acquisition with relaxation enhancement; MR pulse sequence derived
from RARE; SNAPSHOT; MR pulse sequence; SPRITE; single point ramped imaging with 7
enhancement; MR pulse sequence; TMS; tetramethylsilane; TOF; time of flight; TSE; turbo spin echo;
MR pulse sequence

ISSN: 0360-0564 1 Copyright ' 2006 Elsevier Inc.
DOI: 10.1016/S0360-0564(06)50001-X All rights reserved
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Nomenclature: Greek, A; observation time in transport measurement pulse sequence (s), ®; net phase
offset (rad), y; gyromagnetic ratio (rads™'T~'), §; time for which pulsed magnetic field gradient is
applied (s). ¢; phase offset (rad). y: liquid holdup. ygynamic: dynamic liquid holdup, y; surface wetting, 0:
pulse angle (rad), p; spin density (m ), 7; delay time (s), w; angular frequency (rad s~ ", wy; resonance or
Larmor frequency (rads™'): Roman, B; magnetic field (T), By; external magnetic field (T), G: magnetic
field gradient for imaging (Tm™'), M; magnetization (A m~'), M, equilibrium magnetization (Am '),
P; displacement propagator, S; acquired signal intensity, 7): spin-lattice relaxation time (s), 75;
spin—spin relaxation time (s), T5; time constant of the free induction decay in the presence of B in-
homogeneities (s), X; conversion, a; acceleration (m s77), e; component of the stress tensor s, &
magnetic field gradient employed in transport measurements (Tm~"), k; reciprocal space vector em-
ployed in imaging (m~'), q; reciprocal space vector employed in transport measurements (m ).
position vector (m), #; time (s), 7y; delay time in the spin-echo pulse sequence (s), v; velocity (ms™ '), x. y,
z; Cartesian laboratory-frame coordinates, X', y', z’; Cartesian rotating-frame coordinates

I. Introduction

Until the early 1990s, application of magnetic resonance (MR) to studies of in situ
catalysis was almost exclusively the domain of the chemist employing increas-
ingly sophisticated solid-state MR pulse sequences to investigate the mecha-
nisms of catalytic processes. Such work has been reviewed extensively by many
workers, including Packer (/), Dybowski et al. (2), Roe et al. (3), Baba and Ono (4),
Fraissard (5), Haw (6), Ivanova (7), Parker (8), van der Klink (9), Hunger and
Weitkamp (/0), and Han et al. (I1). These reports of in situ catalysis address
the molecular-scale events occurring during the catalytic process and give valuable
information regarding structure—function relationships in catalytic materials. To a
lesser extent, spatially unresolved measurements of molecular diffusion have
been made within catalysts by use of pulsed field gradient (PFG) techniques (e.g.,
Kirger and Freude (12)). The present review is an evaluation of the role of MR
in investigations of in situ catalysis from a quite different perspective—that of
imaging.

Traditionally the technique of the medical physicist, magnetic resonance imaging
(MRI) has long been used to investigate the internal structure of the human body
and the transport processes occurring within it; for example, MRI has been used to
characterize drug transport within damaged tissue and blood flow within the cir-
culatory system. It is therefore a natural extension of medical MRI to implement
these techniques to study flow phenomena and chemical transformations within
catalysts and catalytic reactors.

Figure | is a schematic illustration of the length scales probed by various
MR techniques and the areas of catalysis that can therefore be addressed.
Across these length scales, the ability of MR to quantify both structure and
dynamics, non-invasively and with chemical specificity within optically opaque
systems, offers great opportunities for increasing our understanding of catalysts
and catalytic reactors. Existing MRI investigations tend to fall into two broad
categories:

Microimaging studies of single catalyst pellets. In these investigations, spatial
resolutions of ~30-50 um are typically achieved, and steady- and unsteady-state
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FiG. 1. The MR Toolkit: MR techniques yield information about chemical and physical processes
over length scales of A to cm. Imaging pulse sequences may be integrated with spectroscopy and mo-
lecular diffusion measurements providing maps of chemical composition and molecular transport phe-
nomena at spatial resolutions of 30-500 pm.

liquid distributions within the individual pellets have been imaged. A variety of
applications has been reported. For example, the characterization of processing—
structure—function relationships in catalyst manufacture and, in particular, the
effect of catalyst manufacturing processes on the micro- and meso-scale pore
structure of the resulting catalyst pellet and hence the molecular transport processes
occurring within the catalyst. The same methods also lend themselves to investi-
gation of liquid transport processes during catalyst preparation, such as liquid and
ion transport occurring during a catalyst preparation by ion exchange. With respect
to the catalytic reaction process itself, liquid re-distribution as a result of tem-
perature gradients caused by chemical reaction has been demonstrated. Coke
deposition can also be followed.

Microimaging and flow imaging of reactors. MRI has found considerable success
in imaging the internal phase distributions and liquid flow fields inside reactors,
at spatial resolutions of 100-500 um. The dimensions of systems studied are
constrained to the dimensions of the bore of the superconducting magnet used.
In vertical bore systems, standard magnet hardware allows reactor diameters
of 2.5-6cm to be investigated, with a similar field-of-view along the direction of
the axis of the magnet. In the case of horizontal bore systems, medical imaging
magnet technology provides magnet bores of ~30cm in diameter, which provide
a field-of-view of ~20cm in vertical and horizontal directions. Although these
constraints do not allow us to study the large fixed-bed catalytic processes used
in plants in, say, the petroleum refining sector, we are able to investigate scaled-
down reactors of dimensions typical of those used in industrial research and
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development. Furthermore, with increasing interest in the design of micro-reactor

technologies, many new reactor designs do actually fit inside the magnet at full

scale.

The motivation to extend these measurements and, in particular, to integrate MR
spectroscopy, transport measurements, and imaging techniques is strong. In prin-
ciple, we should be able to study the behavior of a single catalyst pellet within a
reactor while it is operating within the fixed bed and observe directly the effects of
catalyst form (i.e., pellet size and shape) and reactant-solid contacting patterns
within the reactor on overall catalyst activity, selectivity, and lifetime. MR offers
the opportunity to bridge the length scales from the angstrom- to the centimeter
scale by incorporating MR spectroscopy into imaging strategies, thereby spatially
resolving spectral acquisition. Currently, such imaging experiments are in their
infancy and yield spatial resolutions of the order of 50-600 pm, sufficient to show,
for example, the spatial variation of conversion within a fixed-bed reactor. To use
MR routinely in in situ studies of catalysis, new MR techniques will have to be
developed and implemented to retain the inherent, quantitative nature of the MR
measurement in catalyst and reactor systems, which are characterized by strong
variations in magnetic susceptibility and fast nuclear spin relaxation time processes.
In this regard, catalyst and reactor systems are very different from the human body
in terms of the sample response to the radio frequency excitation and pulsed mag-
netic field gradients used in an MR experiment; consequently, medical MRI strat-
egies do not translate directly into catalysis research. It is also worth reiterating the
known limitations of MR techniques regarding systems that can be investigated.
From a practical point of view, large ferromagnetic objects cannot be handled
within and close to a superconducting magnet. However, units comprising alumi-
num and brass can be used within the magnet. With respect to the sample itself, the
ability to characterize a given system is very material-specific. Ferromagnetic and
paramagnetic particles act to distort the local magnetic fields and influence relax-
ation times within the sample, thereby making all investigations based upon quan-
titative analysis extremely challenging. However, each system should be considered
on a case-by-case basis. For example, the strong influence of paramagnetic ions
on signal intensity can be successfully exploited to follow the evolution of redox
reactions with time.

The aim of this review is to introduce the language of MRI to the catalysis
community and to describe the early achievements in this field. The structure of this
article is as follows:

(a) Section II introduces the principles of MRI methods and describes the MRI
pulse sequences currently used in in situ studies of chemical reactors.

(b) Sections IIl and IV review work done in imaging fluid distribution and
transport at the length scale of catalyst pellet (Section III) and reactor
(Section IV).

(c) Section V brings together the work done in spatially resolving spectroscopic
measurements within model reactor environments; these experiments allow us
to follow reactions in situ.

(d) Section VI provides a brief forward look on the future role of MRI in catalysis
research.



