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Foreword

If you want to know how an MP3 player works, the
first thing you need to establish is how it is wired up.
It is the same with the brain. Yet, as Crick and Jones com-
mented in Nature in 1993 (Crick and Jones, 1993) it was
lamentable how little we knew at that time about the
connections of the human brain. All we could do was
infer the connections indirectly from tracer studies in
non-human primates. Yet it was only a year later that
Basser et al. (1994) (see Chapter 1) showed that one could
use MRI to measure the diffusion of water along axons,
and in this way to visualize the major fiber tracts.

Anatomists were skeptical that much would come of
the new methods. The reason is that their concern is with
the fine details of the connections, rather than with the
lie of the tracts. These fine details can be demonstrated
by using the transport of tracers, and the method has
been extensively used for the non-human primate
brain (see Chapter 17). We currently have data for 7009
sites in the macaque brain, with 36994 connections
detailed (http://cocomac.g-node.org). But, unfortu-
nately, though one can use MRI to visualize the transport
of tracers (Saleem et al., 2002), it is not ethical to inject
tracers into the living brain. And so far, little progress
has been made in using tracers in post-mortem brains.
With current methods, dyes only diffuse at the rate of
about 5 mm in 2 weeks (Kobbert et al., 2000).

So to what extent can diffusion MRI provide similar
information for the human brain? Fortunately, methods
for tractography are steadily increasing in sophistication
and although challenges remain it is now possible to es-
timate the probabilities of connections and to trace
through regions of fiber complexity with some success
(Chapter 19). Confidence in the exact site of termination
will increase as the spatial resolution of MRI increases
and it is possible to measure anisotropy within the
gray matter. There are already hopeful signs. By use of
a specialized coil array it has been possible to visualize
thalamocortical fibers as they penetrate perpendicular
to the pial surface and terminate in layer IV of occipital
cortex (Jaermann et al., 2008). And it has even been pos-
sible to measure laminar profiles of activity using fMRI
(Ress et al., 2007).

Given these tools, what can we use them for? First, we
can check whether our inferences about connections
from non-human primates are correct. Second, we can

ix

chart pathways that relate to abilities that are unique
to humans, such as language. Third, we can establish
the borders between neighboring cytoarchitectonic areas
in the human brain, using the principle that each area
has a unique pattern of inputs and outputs. Finally, we
can make use of the in vivo nature of the measurements
to examine how particular white matter connections
contribute to individual variability in behavior, are sub-
ject to experience-dependent plasticity, and are affected
in different disease states.

After introducing the key methods underlying diffu-
sion imaging (Chapters 1 through 6), Section II of this
book focuses on this last point: How can we make quan-
titative measurements of white matter connections in the
living brain, and use these measurements as a probe in
health and disease. In answering this question it is
clearly important to know how the diffusion signal
relates to the underlying biophysical properties of the
axon—the real quantities of interest in white matter.
Chapters 7 through 9 explore this issue in detail and
examine what biological inferences we can already
make from our diffusion data, and what new inferences
we may be able to make in the near future. Chapters 10
through 15 then offer an essential guide to any scientist
using these techniques to ask questions about white
matter changes in health and disease. They start with
a detailed and thorough guide to experimental design
and data analysis techniques (Chapter 10), and then pro-
ceed with chapters giving key examples and highlight-
ing important results from diffusion imaging in
neurological and psychiatric disorders, in development
and aging, and in behavioral neuroscience.

The first two sections of this book are therefore essen-
tial reading for scientists using diffusion imaging in
their quantitative investigations, for those developing
new methodologies for diffusion imaging, and for any
clinicians and systems neuroscientists with an interest
in white matter.

But there is an overarching reason why we need to
know about the underlying architecture of connections
in the human brain. The aim of neuroscience is to under-
stand how the brain works as a whole, and the outstand-
ing advantage of imaging methods (fMRI, EEG, MEQG) is
that they are whole-brain methods. Of course, we need
to understand how each area performs its specific
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function, and for this we will need to resort to recording
the electrical activity of cells, whether singly or in sub-
populations. But tasks are not performed by single areas
but by systems. And this means that we have to under-
stand the interactions between areas within those sys-
tems. In imaging, measures of effective connectivity,
whether structural equation modeling or dynamic
causal modeling (Penny et al., 2004), require the specifi-
cation of a prior anatomical model for that system. This
model need not include every synaptic stage in a circuit,
but we do need to be confident that it holds for the hu-
man brain. Diffusion MRI promises to provide that
model. This means that everyone who uses functional
brain imaging needs to consult this book. In it they
will find everything they need.

The last section provides an extensive account of the
uses of diffusion MRI for neuroanatomy, and it is this
section that those engaged in fMRI and MEG will need
to consult. It starts with an overview of the emerging sci-
ence of connectomics by Van Essen ef al. and Sporns
(Chapters 16 and 18) and an account of the related clas-
sical methods for tract tracing in animals by Morecraft
and colleagues (Chapter 17). In Chapter 19, Behrens
and colleagues give an introduction to probabilistic
methods for tractography. In Chapter 20 Hubbard and
Parker review the ways in which tractography has
been validated. Klein ef al. (Chapter 21) introduce the
notion of connectional fingerprints (see also Chapter
19), and demonstrate that the pattern of connections
can be used to distinguish between neighboring
cytoarchitectonic areas. In Chapter 22, Catani and
Budisavljevi¢ describe the language pathways in the hu-
man brain, and this chapter is followed by a discussion
of the use of tractography in neurosurgical planning by

Bartsch et al. (Chapter 23). In the next chapter,
Rushworth et al. compare the frontal and parietal lobe
connections in the macaque and human brain (Chapter
24). The last chapter (Chapter 25) is called “Imaging
structure and function.” That surely is the aim of all of
those who use imaging to understand the workings of
the human brain.

Richard Passingham
Professor of Cognitive Neuroscience, Department of
Experimental Psychology, University of Oxford, UK
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1.1 WHAT IS DIFFUSION?

Diffusion is a mass transport process arising in na-
ture, which results in molecular or particle mixing
without requiring bulk motion. Diffusion should not
be confused with convection or dispersion—other
transport mechanisms that require bulk motion to carry
particles from one place to another.

The excellent book by Howard Berg (1983) Random
Walks in Biology describes a helpful Gedanken experi-
ment that illustrates the diffusion phenomenon. Imagine
carefully introducing a drop of colored fluorescent dye
into a jar of water. Initially, the dye appears to remain
concentrated at the point of release, but over time it
spreads radially, in a spherically symmetric profile.
This mixing process takes place without stirring or other
bulk fluid motion. The physical law that explains this
phenomenon is called Fick’s first law (Fick, 1855a,
1855b), which relates the diffusive flux to any concentra-
tion difference through the relationship

] = =DNC,; (1.1)

where J is the net particle flux (vector), C is the particle
concentration, and the constant of proportionality, D, is
called the “diffusion coefficient.” As illustrated in
Figure 1.1, Fick’s first law embodies the notion that

Diffusion MRI

particles flow from regions of high concentration to
those of low concentration (hence the “—" sign in equa-
tion 1.1), just as heat flows from regions of high temper-
ature to low temperature, as described in the earlier
Fourier’s law of heating on which Fick’s law was based.
In the case of diffusion, the flux is proportional to the
concentration gradient as well as the diffusion coeffi-
cient. Unlike the flux vector or the concentration, the
diffusion coefficient is an intrinsic property of the me-
dium, and its value is determined by the size of the
diffusing molecules and the temperature and micro-
structural features of the environment. The sensitivity
of the diffusion coefficient on the local microstructure

FIGURE 1.1 According to Fick’s first law, when the specimen
contains different regions with different concentrations of molecules,
the particles will, on average, tend to move from high concentration
regions to low concentration regions leading to a net flux (J).

Copyright © 2014 Elsevier Inc. All rights reserved.



4 1. INTRODUCTION TO DIFFUSION MR

enables its use as a probe of physical properties of bio-
logical tissue.

On a molecular level, diffusive mixing results solely
from collisions between atoms or molecules in the liquid
or gas state. Another interesting feature of diffusion is
that it occurs even in thermodynamic equilibrium, for
example, in a jar of water kept at a constant temperature
and pressure. This is quite remarkable because the clas-
sical picture of diffusion, as expressed above in Fick’s
first law, implies that when the temperature or concen-
tration gradients vanish, there is no net flux. There
were many who held that diffusive mixing or energy
transfer stopped at this point. We now know that
although the net flux vanishes, there are still microscopic
motions of molecules that persist; it is just that on
average, there is no net molecular flux in equilibrium.

A framework that explains this phenomenon has its
origins in the observations of Robert Brown, who is
credited with being the first to report the random mo-
tions of pollen grains while studying them under the mi-
croscope (Brown, 1828) (Figure 1.2). Brown reported that
particles moved randomly, without any apparent cause.
He initially believed that there was some life force that
was causing these motions, but disabused himself of
this notion when he observed the same fluctuations
when studying dust and other inorganic matter.

In the early part of the twentieth century, Albert Ein-
stein, who was unaware of Brown’s observation and
seeking evidence that would undoubtedly imply the
existence of atoms, came to the conclusion that “bodies
of microscopically visible size suspended in a liquid
will perform movements of such magnitude that they
can be easily observed in a microscope” (Einstein,
1905; Fiirth and Cowper, 1956). Einstein used a probabi-
listic framework to describe the motion of an ensemble

FIGURE 1.2 Robert Brown, a botanist working on the mechanisms
of fertilization in flowering plants, noticed the perpetual motion of
pollen grains suspended in water in 1827.

of particles undergoing diffusion, which led to a
coherent description of diffusion, reconciling the Fickian
and Brownian pictures. He introduced the “displace-
ment distribution” for this purpose, which quantifies
the fraction of particles that will traverse a certain dis-
tance within a particular timeframe, or equivalently,
the likelihood that a single given particle will undergo
that displacement. For example, in free diffusion the
displacement distribution is a Gaussian function whose
width is determined by the diffusion coefficient, as illus-
trated in Figure 1.3. Gaussian diffusion will be treated in
more detail in Chapter 5, whereas the more general case
of non-Gaussianity will be tackled in Chapters 6 and 9.

Using the displacement distribution concept, Einstein
was able to derive an explicit relationship between the
mean-squared displacement of the ensemble, character-
izing its Brownian motion, and the classical diffusion co-
efficient, D, appearing in Fick’s law (Einstein, 1905,
1926), given by

(x?) = 2DA, (12)

where (x?) is the mean-squared displacement of parti-
cles during a diffusion time A and D is the diffusion
coefficient.

At around the same time as Einstein, Smoluchowski
(1906) was able to reach the same conclusions using
different means. Langevin improved upon Einstein’s
description of diffusion for ultra-short timescales in
which there are few molecular collisions, but we are
not able to probe this regime using MR diffusion mea-
surements in water. Since a particle experiences about
10! collisions every second in typical proton-rich sol-
vents like water (Chandrasekhar, 1943), we generally
do not concern ourselves with this correction in diffu-
sion MR.
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FIGURE 1.3 The Gaussian displacement distribution plotted for

various values of the diffusion coefficient when the diffusion time was
taken to be 40ms. Larger diffusion coefficients lead to broader
displacement probabilities, suggesting increased diffusional mobility.
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