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Preface

This book, Linear Statistical Models, is designed as a textbook or for a one-semester
course for graduate or senior undergraduate students. It is written primarily for
students majoring in statistics or related fields, but can be served as a reference
book for researchers to better understand linear models in statistics.

Although there are many excellent English textbooks on this subject, most of
them contain lengthy explanations and examples, which are difficult and time-
consuming for non-native English readers. My teaching experience in China and
Canada has inspired me to write a concise textbook with simple language, reducing
the language barrier for students and instructors from non-English-speaking coun-
tries. The main objective of this book is to introduce the theory of linear statistical
models in a clear but rigorous format. Hopefully, students, instructors, researchers,
and practitioners will find this text more comfortable than most other textbooks.

This book grew from my lecture notes for teaching linear statistical models at
Yunnan University (China) and University of Manitoba (Canada). The contents
and structure of the book are mainly taken from the textbook “A First Course in
Linear Model Theory” (Chapman & Hall/CRC, 2002) by N. Ravishanker and D.
K. Dey, with reference to other standard textbooks, such as “A First Course in the
Theory of Linear Statistical Models” (2nd ed. McGraw-Hill, 1998) by R. H. Myers
and J. S. Milton, “Theory and Application of the Linear Statistical Inference and
its Applications” (2nd ed. John Wiley & Sons, 1973) by C. R. Rao, “Theory and
Application of the Linear Model” (Duxbury Press, 1976) by F. A. Graybill, and
“Linear Models” (John Wiley & Sons, 1972) by S. R. Searle.

The mathematical prerequisites for this book are multivariate calculus and ma-
trix algebra, where the later plays a fundamental role in linear statistical models.
Statistical prerequisites include statistical theory, multivariate regression, and ana-
lysis of variance.

This book uses seven chapters to introduce and develop the essential theories
and methodologies of linear models in statistics, where important concepts and
terminologies are italicized and indexed. At the end of each chapter, there are many
exercises for readers, some of which are supplementary materials of the textbook.

Chapter 1 introduces generalized inverse matrices and solutions to linear sys-
tem of equations, which are necessary for developing the general theory of linear
models. Chapter 2 describes the general linear model and related topics, includ-
ing the least squares method, estimable functions, and estimation subject to linear
restrictions. Chapter 3 discusses multivariate normal and related distributions,
especially the distributions of quadratic forms as theoretic foundations of statistical
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inference for the general linear model in Chapter 4, where linear hypothesis tests and
confidence intervals are developed. Chapter 5 is devoted to linear regression mod-
els, presenting diagnostic tools for model assumptions, criteria for model selection,
multicollinearity, and some related topics. Then Chapter 6 uses simple examples to
briefly illustrate fixed-effects, random-effects and mixed-effects models. Finally, the
generalized linear model is introduced in Chapter 7, with emphasis on discussing
its components, link structures, parameter estimation, inference and diagnostics.

In addition, this book provides the readers with Table of Common Statistical
Distributions in Appendix A, which includes the commonly used discrete distri-
butions, continuous distributions and multivariate distributions. For each listed
distribution, the table gives the detailed information about its pdf/pmf, moments,
moment generating function, and important notes on associated distributions.

Like many statistical textbooks, the most commonly used statistical tables for
the standard normal, ¢, x? and F distributions are attached in Appendix B, where
the table values are computed by using statistical software R, available on its official
web site

http://www.r-project.org

In writing this book, I received great contribution from many of my students. I
take this opportunity to thank those graduate students who took Liner Statistical
Models from me and helped me in typewriting and proofreading the manuscript.
Among them are Jie Li, Xiaojie Yang, Tianxia Ai, Hua Li, Yunqi Zhang, Xiaozhun
Zhuang and Menglin Li.

I would like to sincerely thank Nalini Ravishanker and Dipak K. Dey, for writing
an excellent textbook, from which I greatly benefited. I am grateful for help from my
teachers, colleagues, friends and students, especially Xueren Wang and Niansheng
Tang, Yunnan University; Yuehua Wu, York University; Jianxin Pan, University
of Manchester; Xuming He and Peter Song, University of Michigan (Ann Arbor);
Michael Stephens and Richard Lockhart, Simon Fraser University; James Fu, Liqun
Wang and Xikui Wang, University of Manitoba; Gemai Chen, University of Calgary;
Jiahua Chen, University of British Columbia; Keming Yu, Brunel University.

In addition, I would like to acknowledge the financial support of Yunnan Uni-
versity and the Natural Science Foundation of China (NSFC) for publishing this
book.

Last, but not least, I would like to sincerely thank my wife Jikun Yi and my
daughter Yili Zhang from the bottom of my heart for their patience, understanding,
encouragement and steadfast support.

Jin Zhang )

School of Mathematics and Statistics
Yunnan University

Kunming, China
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Chapter 1

Generalized Inverse Matrices
and Related Topics

As a powerful mathematical tool, linear and matrix algebra plays an important
role in the foundation of linear statistical models. Thus, this book requires basic
knowledge of linear and matrix algebra, which is essential for understanding and
developing the theory of linear statistical models. The elements of matrix algebra
useful for statistics can be found in many textbooks, such as Rao (1973), Sear-
le (1982), Graybill (1976, 1983), Jergensen (1993), Rao and Toutenberg (1995),
Harville (1997), Myers and Milton (1998), Christensen (2002), and Ravishanker
and Dey (2002).

In this chapter, we briefly introduce the essentials of generalized inverse matrices,
solutions to systems of linear equations, and some related topics, which are necessary
in the development of theory for the general linear model. Throughout this book,
all numbers, vectors and matrices are assumed to be real, unless stated otherwise.

1.1 Generalized Inverse Matrices

The notion of generalized inverse matrices was originally established in the theory
'of linear equations. The generalized inverse for matrices has now become a very
important mathematical tool in the theory of linear statistical models (e.g., Rao
and Mitra, 1971; Pringle and Ragner, 1971; Searle, 1971, 1982; Rao, 1973; Rao
and Toutenberg, 1995; Graybill, 1976; Jorgensen, 1993; Harville, 1997; Myers and
mitton, 1998; Christensen, 2002; Ravishanker and Dey, 2002), making it easy to
understand certain aspects of analysis procedures associated with linear models.

A generalized inverse or g-inverse of an m x n matrix A is defined as any n x m
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matrix G, denoted by A~ satisfying the equation
AGA=A or AA A=A
The “generalized inverse” for matrices i§ sometimes called the “conditional in-
verse” or “pseudo inverse” in the literature. However, the term of “generalized

inverse” or “g-inverse” will be used throughout this book, as did in many other
related books.

Unlike the regular inverse, the generalized inverse of matrix A always exists,
but it is not unique unless A is a square nonsingular matrix (see Example 1.1.1),
according to the following theorem.

Theorem 1.1.1. For any matriz A, its g-inverse A~ always exists and is uniquely
to be A1 if and only if A is invertible.

Proof. Let A be a matrix of rank 7. Then there exist invertible (nonsingular)
matrices P and @, such that

(I, O ety O i
pag=(5 %) wacr(h %o
where I, is an identity matrix of order r. It follows that
_ I. 0\, (L. 0\ _ (I, O
aca-a = (5 Oarar (5 0= (5 )

— Q—lGP"1=(I’ B)

C D
I, B
= G=Q ( C D) P.
Hence, a g-inverse G or A~ always exist, and A~ = A~! if and only if A is

invertible.
O

Actually, the proof of Theorem 1.1.1 provides us an algorithm to compute any
g-inverse A~. Below is a modified algorithm for computing a simple g-inverse of
matrix A, where 7(A) denotes the rank of A.

Algorithm to compute A~:
1. Find a nonsingular submatrix M of order r(A).
2. Transpose A to get A'.
3. Replace M’ by M ~! and other elements of A’ by 0 to obtain A~.

Proof. Let P and Q be elementary permutation matrices such that

PAQ = (lg g) =E.
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Since P and @Q are orthogonal matrices (P~} = P’ and Q™! = Q’),
A" =(P'EQ7') =QE P=[PYE)QY.

-1
It suffices to show that one choice of E~ is (IWO g) In fact,

M B\(M-' o\/M B\ (M B
C D 0 0 C D) \C CM'B
where CM ~!B = D can proved as follows. Note that

I 0\ (M B\ (I -M'B\ (M 0
-CM~! 1)\C D)\oO I ~\0 D-CM'B

and
M B M 0
’(A)zr((c D)):r((o D—CM“B))
so that
r(M) =r(M)+r(D-CM™'B)
or

r(D-CM™B)=0.

O
Example 1.1.1. To find a g-inverse of the matrix
4 1 2 0
A=|1 1 5 15},
6 2 6 10
4 1 2 0 . .
we can choose M = 1 1) (5 15) 252 nonsingular submatrix of order
2 =r(A). It follows from the above algorithm that a g-inverse of A is given by
1 1
z —z 0
3 3
M~ 0 -3 3 0
== =73 3
= 0-|7 § o
0 0 0
or
0 0 0
_ 0 0 0 0 0
A= (M—1 o) 13 o0 o0
-5 1 0
O

Example 1.1.2. For a symmetric matrix

I, 0
4=(5 o)
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its g-inverse has the form (see the proof of Theorem 1.1.1)
- _ (I, B
(& n)
which can be symmetric or not.

O

Remark: The g-inverse of a symmetric matrix A may not necessarily be symmetric,
but it has a symmetric g-inverse %(A‘ + A") no matter A~ is symmetric or not.

In matrix algebra, a square matrix A is said to be idempotent if A2 = A, and
A(A’A)~ A’ is called the projection matriz, which plays an important role in the
linear model theory. The main properties of these matrices are given in the next
four theorems, where tr(A) denotes the trace of A.

Theorem 1.1.2. If A is an n X n idempotent matriz, then

1. The eigenvalues of A are 1 or 0.

2. I, — A is idempotent.

3. r(A) =tr(A); r(I, — A) =n—r(A).

Proof. Let A be an eigenvalue of A and x be a corresponding eigenvector ( # 0).

1. Az = \x = AFxz = Mz (k = 1,2,---). For polynomial f(t) = t* —t,
F(A) =0 — f(\)z = f(A)z = 0 —> f()) = 0. That is, A= 1 or 0.

2. (In—A?=1I,+A?—2A=1, — A.

3. Let A= P <f) g) Q= (P, P) ({) g) (82) — P,Q,. Then,

g I, 0\ (L 0 I, 0\ (Q:P, 0
A_Az"(oo_ooQPoo_oo
= Q1P1=Ir.
It follows that

tr(A) =tr(P1Q1) = tr(Q1Py) = tr(I,) =r =r(A)

and
r(I,—A)=tr(I, — A) =n—tr(A) =n—r(A).

Theorem 1.1.3. Let A be an m x n matriz of rank r. Then
1. A~ A and AA~ are idempotent of rank r.
2. I,— A" A and I,,, — AA~ are idempotent of ranks n —r and m — .
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Proof.

It is straightforward to show that A=A and AA~ are idempotent. The rest
results follow from Theorem 1.1.2 and

r(A)=r(AA"A)<r(A"A) <r(A).

Theorem 1.1.4. Let A be an m x n matriz. Then
1. A(AAA)"A’A=A and A’A(A’A)"A' = A"
2. A(A’A)~ A’ is unique, symmetric and idempotent of rank r(A).
3. I,, — A(A’A)~ A’ is unique, symmetric and idempotent of rank m — r(A).
Proof.
1. Let M = (A’A)"A’A —I. Then
A'AM =0= (AM)(AM)=0= AM =0.

That is,

AM = A(A'A)"A’/A-A=0 or A(A'A)"A'A=A.

2. Let M = (A’A)] A’ — (A’A); A’ where (A’A)] and (A’A); denote any two
g-inverses of A’A . Then

A’AM = 0= (AM)(AM) =0 = AM =0.

That is,
A(A'A)TA = AA'A) A

Hence, A(A’A)~ A’ is unique, and it is symmetric since we can choose a symmetric
g-inverse (A’A)~ (refer to the Remark behind Example 1.1.2).

Obviously, A(A’A)~ A’ is idempotent, and its rank is r(A) due to
r(A)=r(A(A'A)"A’A) <r(A(A'A)"A') <r(A).

The rest results follow immediately.

Theorem 1.1.5. Let A be an m X n matriz. Then

1. The projection matriz P = A(A’A)~ A’ represents the orthogonal projection
from R™ onto the column space

C(A)={Ay |y e R"}.

2. The matrizx I — P represents the orthogonal projection from R™ onto the null

space
N(A)={z| Az=0, z€ R™},
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where N'(A’) = C(A)*, the orthogonal compliment of C(A).
Proof. For any £ € R™, we have

z=Px+ (I - P)x =z +x,,
where ¢ € C(A), z; € N(A'), 1 L x2 and C(A) L N(A').

1.2 Solutions to Linear Equations

In this section, we briefly discuss the system of linear equations and its solutions.
A convenient way for discussing the solutions of linear equations is to employ the
generalized inverse for matrices, which plays a fundamental role in the development
of linear model theory.

A linear system of m equations in n unknown variables z,, z2, ..., x, can be
written as
aj; a2 +r Qg T by
a1 @z - QG T2 b2
AGm1 Am2 - Omn Tn bn
or
Ax = b,

where A is an m X n coefficient matrix, x is the vector of unknown variables, and
b is the right side of the system.

A linear system (of equations) Ax = b is said to be consistent if it has one
or more solutions. Otherwise, if no solution exists, the system is inconsistent.
Let (A,b) denote the augmented matriz of the system. Then the following is a
well-known theorem in linear algebra, in regard to the system of linear equations
Az =b.

Theorem 1.2.1. A linear system of equations Ax = b is consistent if and only if
r(A,b) =r(A).

The solution of a consistent linear system Ax = b can be expressed in terms of
the generalized inverse of coefficient matrix A, according to the next two theorems.

Theorem 1.2.2. Let Ax = b be a consistent linear system. Then any solution to

the system is given by
z=A b+ (I —-AjA)z,

where Ay is a specific g-inverse of A, and z is an arbitrary vector.
Proof. Let Azg=b. If x = Ajb+ (I — Ay A)z, then
Ax = AAGb+0=AAj Axy = Az = b.
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Conversely, if Ax = b, then
z=A b+ (I - A A)x.

O

Note that in Theorem 1.2.2, A; b is a specific solution to the nonhomogeneous
system Ax = b, while (I — Ay A)z is an arbitrary solution to the homogeneous

system Ax =0

Theorem 1.2.3. Let Az = b be a consistent linear system with b # 0. Then T is

a solution to the system if and only if x = A™b.

Proof. By Theorem 1.2.2, x is a solution to the system if and only if

2= Agb+ (T — Ay A)z = Gb,
where G = Ay + (I — Ay A)zb'/||b||? is a g-inverse of A.

1.3 Exercises

1.1. Let A, B, C and D be respectively n X n, n. x m, m x m and m x n matrices.

Verify that
(a)

(A-BCD)'=A"1'+A'B(C'-DA'B)"'DA™ !,

provided all involved inverses exit.
(b)
A lab’A!

-1 __ -1
(A-ab)' =A™ + -5

where A is invertible, @ and b are n-dimensional vectors, and 1 — b’ A~ 'a # 0.

"1.2. Let A and B be m x n and n x m matrices. Show that

(a)
M, — AB| = A™"|\I,, — BA|.

(b) The nonzero eigenvalues of A and B are the same.
Hint:
Let P and @ be nonsingular matrices such that
I 0 =17 =1 __ Bl
PAQ = (0 0) and QAP = <B3
The result in part (a) follows from

B,

I~ AB| = M — (PAQ(Q ' BP™) = Ao — (3

B,
By’

1‘3’") | = A™"T|ALL — By



