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~Introduction

The homotopy'classification of maps,. and closely related to it the
study of extension and lifting probiems, is a central topic in

algebraid topology. Steenrod writes in [122]:

"Many of the basic theorems of topology, and some of its most
successful applications in other areas of mathematics’ are
solutions of particular extension problems. The deepest results
of this kind have been obtained by the method of algebraic
topology. The essence of the method is a conversion of the
geometric problem into an algebraic prohblem which is sufficiently
complex to embody the essential features of the geometric problem,
yvet sufficiently simple to be solvable by standard algebraic .
methods. ™Many extension problems remain unsolved, and much
of the current development of algebraic topology is inspired
by the hope of finding a truly general solution." ..

Obstruction theory. is an attempt at such a general solution. This.

théory had its origins in the glassical works of Hopf, Eilenberg,

Steenrod and Postnikov around 1940 and has been developing ever since,
5 albeit in an uncoordinated fashion. Portions of obstruction theory
appear in most textbooks on algebraic topology, for instance in
| Steenrod's book on fiber bundles [120], or in the books by Spanier [116]
and G.W. Whitehead [130]. _These treatments often differ in approach
and in the assumptions under which the theorems are proved, .such as‘
simply-connectedness, or that the fundamental group operate trivially,
or that a fiber bundle be given instead of a fibration, or that dﬁly
maps be considered instead of sections and retractions.

In this book we dispense with such restrictions wherevef possible and

so prove classical theorems in their full general{ty, for instance.
theorems on the Postnikov deéomposition of a fibration, on primary and
hiéﬁer—ordér cohomology obstructions, and on the homotopy classification
of maps that, as we show, apply to sections and retractions as well.
Theorems of this kind are known to algébraic tbpologists,'at least in

i a rough and ready way, and are commonly used. However, no self-contained
: exposition of obstruction theory has appeared.

i ;

4

We have here endeavored to give a systematic presentation of ﬁhe subject,
integrating the different approaches found in the literature. The
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essential tool for'this is Bckﬁann-Hilton duality, which divides the
presentation into two parts leading in parallel to the same goals. We
haQe also systematized in another way by generalizing in stades. Thae
is, we develop in 4 patailel stages the homotopy classification first of

1) maps : : using principal cofibrations,
2) sections of fibrations -usiné principal cofibrations,
3) maps ~using _ relative principal cofibrations,
4) sections of fibrations using relative prin&ipal cofibrations

and then, as dual to these, the homotopy classification of

1').maps 3 ! using principal fibrations,
2') retractions of cofibratioﬁs using principal fibrations,
3Y) mapsSi. ﬁsinq relative principal fibrations,
4')'retractions of cofibrations. using relative principal fibrations.

Stage 1) is ‘a special case of 2) and 3), which are themselveslspecial
cases of 4). The reader need not shrink from having eight versions sung
to him of the same old song, since in fact we develop only 2) and 2')
thoroughly, in other stages often omitting details in explicitly formu-
lating dual theorems, generalized ones, or their proofs. In the simpler
stages we always point up the basic ideas clearly. We feel that the
reader profits more from stdgewise generalization of the theory, than

if we had begun with the complicated versions 4) ancd 4') and only later

moved on to the spocial cases, which are important in their own right.

In the literature most attention has been paid. to approaches 1), 2) and
1'). ®e will show that classification theorems of Barcus-Barratt [5]

for 1), and dually of James-Thomas [57] for 1), are special cases.of
general classification results which we formulate using spectral sequences
and which are valid for 2) and 2') also. Well-known in the contex

of 1) is the Puppe or cofiber secuence, as is in 1') the dual fiber
sequence. ile generalize these sequences at every stadge to long exact
classification sequences, and construct from them exact couples yielding
spectral sequences for homotonyAclaésificatién. Theée we will study in
some detail. The classification seguences can also be derived from

cofiber and: fiber seaquences in the catecory of ex—spéces, see (2.6).
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However, we will construe them in terms of properties of primary obstruc-
tions and differences, which are alreacdy intimated in- the classical

works ancd have a natural significance in obstruction theory. Nonetheless,
the importance of the ex-space category'anﬁ relative methods as in 3),

4) and 3'), 4') is made clear by the existence of the principal reduction
of Cw—comolexes and of Postnikov. decompoéltlons. These two existence
groofs are a main result of this book. Relative methods in obstruction:
theory have been developed in the last ten years by James, Thomas,
McClendon, Larmore, Becker and others.' This book can be regarded as

a systewatié foundation of, and motivation for, these relative methods.

In the course of our p;esentation it was often necessary to introduce
new notations because of fhe uncoordinated state of the theory in the
literature. The text also contains various new, amplifying results.
Cross-references to the literature for our results and definitions are
contained under 'Remarks'. The bibliography is not intended however

to encompass the entire subject.

I woyld like to acknowledge the suppoft of the Sonderforschungsbereich

40 Theoretische Mathematik towards the completion of this book, in

particular I am grateful to Mrs. lMotee Spanier for typing the final
version. I especially thank Stuart Clayton for trgnslating the German

manuscript.

H.J. Baues
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CHAPTER O. CONVENTIONS. AND NOTATION

(0.0) Maps and homotopy. Excision theorems

: The following conventions and notation will be maint&ined through-
out the bcok. Let Top be>the category of topological spaces and con-—
tinuous‘maps, and let T;Jpo .be the category of pbinted topolpgical
spaces. Unless expressly stated to the contrary, from now on all sEaces
are Eointed,‘that is, they all have distinguished base points * (start-
ing with Chapter 1 weé in fact require all spaces to be well-poiﬁted;

see (0.1.2)). Furthermore, all‘maps and all homotopies (denoted by = )

preserve the base points. The set of homotopy classes of base point-

preserviné maps f: X — Y will be denoted by [%, %) -In this set O
denotes thé claés of nullhomotopic maps. We denote by 1, 1x or id
the identity map. We will often use the same symbol to refer to a map
and the homotopy class it represents. It will be clear from the context

whether a map or a homotopy class is meant. The composition of maps or

.homOtopy classes f: X—+Y and g: X—+2 will be denoted by gof

or gf . Composition induces mappings of sets

-

| g* : [Y,x].—¢‘[Y,z] with g, (f) af 194

3 gz ¢

£ 2 1%,2) S (X2 with £ e

There are corresponding mappings for homotopy -.classes of maps between

/

pairs.

~~ TLet A x B be the topological product of A "and B , and let
AvBc A x B be the one-point union or wedge of A and B , that is

AvB=AXx{*} y{* x B. We have the canonical bijections

[A v B,X] = [A,X] x [B,X]

[X,A x B]’ [x Al [X,BT .



(0:0:1) . 2

¢ From pairs of maps we obtain mapé (f1,f2): AvB—»X and
(g3+9,): X — A x B . The maps ¢ = E I X vl % and d={1,1):
X —» Xx X are called the folding map and the diagonal, respectively.

We have

(£4.£y)) =col(f, v £,) and (94195) = (gy x g,)ed
)
Let XY be the space of non-pointed continuous maps Y —+ X with the

compact-open topology. Then
: £ :
(0.0.1) Exponential Law : For locally compact KX the map

|}= xK x Y _” (XK)Y‘

‘ i
with eyt rE,Y) or o vE Y, te.K 18 a bﬂjecEion. J is a

homeomorphism if Y .and K are hausdorff, see [24] .

Related to the exponential law.are the following facts.

(a) Let K be locally compact. Then the evaluation map
XX x K = X with (f,t)» £(t) is continuous, see (4.14) of
[24] . :

(b) Let K be .locally compact and let g: A — B be an identifi-
catiofh map. Then gx 1 : Ax K— B x K is also an identifi-

- cation map, see (4.13) of [24] .

(c) As an extension of (b), let A © X and let A be compact and
let h: X — X/A be the iderftification map. Then for any' space
Z themap q x 1 : Xx Z-—» (X/A) x 2 is also .an identifica~
tion map. : ‘

(d) Let i: A—+ B be an embedding. Then for any space Z the map

i%2: a2 —» B?2 is an embedding, see 4.6 of [24] .

(e) 1In connection with (c) we can say the following. Let the map

p: A=+ B be surjective and such that for every compact subset
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L, ef B there is a compact subset K <A with p(K) = L.

Then for any space 2 the map 2P zB._» zé with f~+»fop

is an embedding. An example of such a map Pp is the map g
in (c).

(£) Por 2 hausdorff and arbitrary X, Y we have
x x V% = x% x ¥

’
(g) For arbitrary X, ¥, Z we have

XY+Z =3 XY R xZ

where Y+Z is the topological sum, that is, the disjoint union.

Tn the commutative diagram of unbroken arrows

X

it Sy
fiatais ;
Yoo el pull 5%y
. x2

G

the subdiagram 'push' is called a cocartesian square or pushout when to

every pair of maps f1,f2 there exists exactly one map £ = f1'U f2
extending the diagram. By 'extending the diagram' we always mean ’com;
mutatively'. Such an .X is uniquely determined uﬁ to homeoporphism;

There exists a cocartesian squére for 11 and 12 , since we can take

X=X X, = (X1 * X2)/~

(V)
1 Xo 2%

where the equivalence relation in the disjoint union’ x1 + x2 is gen-

erated by 11(x)a~ iz(x) with x € X° e g giveﬁ the quotient top-

ology. If i1 is an inclusion, X is called an adjunction sﬁace.

There is a dual definition to the preceeding one. In the commuta-

tive diagram
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the subdiagram 'pull' is called ,a cartesian square or pullback when
to evafy pair of maps f1',f2 there exists exactly one map f = f1:1 f2
extending the diagram. Such an X is uﬁiquely“determined up to homeo-
morphism. There exists a cartesiaﬁ'square for Pq and pé » Since

we can take

X = X, xxo X, ®= {(x,¥) € X, x X, | Py (x) = p,(y)}

with the subspace topology from X, X X, .

(0.0.2) Cocartesian and cartesian dfagrams can be combined in the

following way. Consider the commutative diagrams

f T
We——— W' W———— W
A 4 4 T
'
B D2 B
A —— U VA B «a D B' a
A} . A 3
]
a D1 o
Uug ———rrrr00——10u' g — U'
g9 g

Lf D is ‘cocartesian, then

1

D is‘_cocartesian<=>b3 is cocartesian.

2
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0 & ey

5 (0.0.3)

5 ds cartesian, then

D1 is cartesian eg.D3 is cartesian

(0.0.3) Cocartesian and cartesian squares are compatible with products

and mapping spaces in the following ways. Let a commutative diagram
A
X

t1) If (D) -i8 cocartesian and K 1is locally compact, the diagram

(D) l

e B

be given. Then

Ax K — Y x K

is also cocartesian, as follows easily from (0. 0.7} (b)Y . An

extensjon of this will be described in (0.5.3) .

(II) If (D) is cocartesian and X, Y, B are compact hausdorff
(or aiternatively if the quotient map X+Y —» B .satisfies the

condition in (0.0.1)(e) ), the diagram

zA 3 ZY
z(D) .
zx & ZB



is cartesian, as follows easily from (0.0.1)(e) and (g) .

(III) If (D) 1is cartesian and 2 is hausdorff, the diagram

1

A% =Y i

Xz ;Bz

is also cartesian, as follows easily from (0.0.1)(d) and (f).

We now define some further homotopy coﬂcepts. Let I = [0,1]‘ be

the unit interval and let H: f = f, : X — ¥ be a homotopy. That iﬁ,

fo and H1 = f1 , where for t € I

&
H: I x X — Y is a map with 0

the pointed map H,: X — Y is defined by Ht(x) = H(t,x). for % € X .

=
The map H gives u§ the adjoint map H: X — vyl with H(x)(t) = H(t,x)
qoﬁ = f and q1ﬁ - £ (see (0.0.1) ), where we define q, (0) = b(t)
for §e YI . Conversely, every such map H gives us a homotopy
H: fo =f, . H is a pointed map, with the trivial map O € vl as base

point in v! .

Given the maps ¢(in Topo)

A—_g____)Y

i 90791

X

oo

we call H: o= 9, a homotopy under A when for all t € I we have

Hto i = g . The set of homotopy clésses under A 1is denoted by [x,v19
or [X.Y]A . It will a9ls0 be referred to as the homotopy set relative

g , especially when i is an inclusion. If g is the identity, the

homotopy set under A will also be called the retraction homotopy set

-

S e e e e e



7 : (0.0.4) -

for i , denoted by <X,A> . Every homotopy set under A can be

regarded as a retraction homotopy set in the following way. Let

A —————g—————yY

- B ‘push

X——-—-,—_—-»g,,x

g9

be the cocartesian diagram for (i,g) . Then g induces a bijection
s 74 il : x,¥19 = <g,x,¥>

Dual to 'homotopy under' is the concept of 'homotopy over',
defined as follows. Given the .maps (in Topo)

Y

we céll_H: fozr f1 a homotopy over B when for all t '€ I  we have

po Ht C o A Thé set of homotopy classes over B is denoted by [x,'Y]f
or’ [x,Y]B . It will also be referred to as the homotopy set of liftings
of f , ‘especially when p 1is a fibration. If £ is the identity,

the homotopy set over B will be called the section hoﬁotopy set for

p- » denoted by <.B,Y> . It will always be éléar from the context

whether < , > denotes a section homotopy set or a retraction homotopy

set. Every homotopy set over B. can be .regarded as a section homotopy

set as follows. Let
~

£

f*Y ———————— ¥

" pull 1p

¢

X ————> B



