Non-Invasive

Physiological

Measurements

Volume 1

edited by Peter Rolfe

1851 P33-33

NON-INVASIVE PHYSIOLOGICAL MEASUREMENTS

VOLUME 1

Edited by
Peter Rolfe

Bioengineering Unit, Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, England

1979专用章

Academic Press

London · New York · San Francisco

A Subsidiary of Harcourt Brace Jovanovich, Publishers

ACADEMIC PRESS INC. (LONDON) LTD 24-28 Oval Road London NW1 7DX

U.S. Edition published by ACADEMIC PRESS INC. 111 Fifth Avenue New York, New York 10003

Copyright © 1979 by Academic Press Inc. (London) Ltd

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers

Library of Congress Catalog Number: 78-72551 ISBN: 0-12-593401-7

CONTRIBUTORS

- L. E. BAKER, Biomedical Engineering Program, University of Texas, Engineering Science Building 610, Austin, Texas 78712, USA.
- A. V. J. CHALLONER, St John's Hospital for Diseases of the Skin, Homerton Grove, London E9 6BX, England.
- R. W. I. COOKE, Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, England.
- D. DELPY, Department of Medical Physics and Bio-engineering, University College Hospital, 11-20 Capper Street, London WCIE 6AJ, England.
- C. A. GREATOREX, Guy's Hospital, St Thomas's Street, London SE1 9RT, England.
- D. W. HILL, Research Department of Anaesthetics, The Royal College of Surgeons, Lincoln's Inn Fields, London WC2A 3PN, England.
- G. HOLTI, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, England.
- A. HUCH, Universitäts-Frauenklinik, 3550 Marburg an der Lahn, Pilgrimstein 3, West Germany.
- R. HUCH, Universitäts-Frauenklinik, 3550 Marburg an der Lahn, Pilgrimstein 3, West Germany.
- D. LONGMORE, National Heart Hospital, Westmoreland Street, London, W1M 8BA, England.
- K. W. MITCHELL, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne NEI 4LP, England.
- G. E. NILSSON, Department of Medical Engineering, Linköping University, Linköping, Sweden.
- P. Å. ÖBERG, Department of Medical Engineering, Linköping University, Linköping, Sweden.
- D. PARKER, Department of Medical Physics and Bio-engineering, University College Hospital, 11-20 Capper Street, London WC1E 6AJ, England.
- V. C. ROBERTS, Department of Biomedical Engineering, King's College Hospital Medical School, Denmark Hill, London SE5, England.
- P. ROLFE, Bioengineering Unit, Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, England.

- D. C. SALTER, Chemical Measurement Unit, Department of Dermatology, The Slade Hospital, Oxford OX3 7JH, England.
- A. J. SAINZ, Department of Biomedical Engineering, King's College Hospital Medical School, Denmark Hill, London SE5, England.
- T. TOGAWA, Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, 2-3-10, Surugadai, Kanda, Chiyoda-Ku, Tokyo, Japan.
- J. VERBURG, Laboratory of Medical Physics, University of Amsterdam, Herengracht 196, Amsterdam, The Netherlands.
- E. VAN VOLLENHOVEN, Department of Cardiology, University Hospital, University of Leiden, Leiden, The Netherlands.

PREFACE

The desire to detect, observe and quantitate physiological phenomena has been the stimulus for the development of a vast and ever growing number of techniques, and for the evolution of physiological measurement as a specialist subject. Within this general area of development there has, in recent years, been a trend towards the perfection of measurement procedures which are not disturbing, intrusive or cumbersome to the subject. Now the combination of the inventiveness of the workers in this field and the exploitation of advances made in physics, electronics and computing has made the non-invasive measurement of a large number of physiological variables both feasible and useful in research and clinical care.

One aim of the book is to demonstrate the breadth of the subject of non-invasive measurement, in order to encourage both the routine use of such techniques and their further development. This volume includes work on well-established topics, such as blood pressure measurement and phonocardiography, on the very new techniques of transcutaneous blood gas measurement and evaporative water loss measurement, as well as on three different applications of the still controversial topic of electrical impedance measurement. The ultimate, and perhaps attainable, goal of many workers in this field is to see all physiological measurements being made by non-invasive techniques. This presents a huge challenge to us all, but I hope that a consideration of the advances represented by the topics in this book will provide us with the necessary encouragement to take on the challenge, and succeed.

The interest in non-invasive techniques is not confined to the clinical sphere, where there is an obvious need, it also exists amongst physiologists engaged in fundamental animal research. These workers are increasingly turning to measurement techniques which have adequate accuracy and at the same time do not disturb the physiological process being examined. At present not all of the available techniques are ideal for these purposes, but improvements continue to be made. It is hoped that, in addition to the research physiologist, those involved in physiological measurements in anaesthesia, intensive care, obstetrics and paediatrics will find this book of interest and of value, and that it will attract medical and physical scientists, technical and nursing staff alike.

viii

Finally, I would like to thank all the contributors. I am indebted to them for responding so enthusiastically to my request for their involvement, particularly as I know of the sacrifices which must often be made to write about one's work.

ordinad i septembria de la septembria de la composición de la composición de la composición de la composición La tradizzación de la composición de l

January 1979

PETER ROLFE

CONTENTS

	Con Pref	face	•	•	 	•	•	•	i.	vii
1.	AN DIA	INTRODUCTION TO AGNOSTIC TECHNIC D. Longmore	NOI	N-IN S .	VASI	VE CA	ARDI	· •		. 1
		D. Longmore						i laini		
2.	IN	ANTIFYING SKIN I <i>VIVO</i> USING ELI ASUREMENTS			ANI AL I					
		D. C. Salter								
	1.0	Introduction .	. y r 1	. 10	: 6					21
		The Non-electrical Physical		Char	acteris	tics of	Skin	٠.		22
		Skin as an Electrical En		•		•		•		2.2
		Electrical Impedance Be		our of	f Biolo	gical N	Aater	ials		22
		Polarization Impedance								27
		Electrodes	•			•				31
	7.0	Multiple Electrode Tecl	nniqu	les			. •			32
	8.0	Design of a General	Syst	tem	for N	Ieasur	ing	the		
		Electrical Characterist				. • _			•	41
	9.0	The Oxford-Plessey Mi		stem	s Four	ier Tr	ansfo	rm		
		Impedance Analyser	•	•					•	49
		Future Work .	•	•	•	•	•			57
		References	•	•		• "	•		•	61
		1089,20	-				. * /-	24		
3.	ELI	ECTRICAL IMPEDAN L. E. Baker	CE	PNE	UMO	GRAF	YHY			
	1.0	Introduction .	¥0	A.			6 1			65
		Historical Background			1	, in		150	100	66
		Basic Principles .			Ą.	17.7		100		67
		Origins of Impedance C	hang	es		100	1			74
		-								

CONTENTS

	5.0 Clinical Applications of Impedance Spirometry.	. 80
	6.0 Assessment of Intrathoracic Fluids	82
	7.0 Guard Ring Electrode	87
	8.0 Safety	89
	9.0 The Future	90
	References	91
		-
4	THE ROLE OF ELECTRICAL IMPEDANCE	
т.	THE CONTROL OF THE PROPERTY OF	
	CENTRAL AND PERIPHERAL BLOOD FLOW	
	CHANGES	
	D. W. Hill	
	10 7	٥٣
	1.0 Introduction	95
	2.0 Basic Principles	96
	3.0 The Effect of Respiration on the Tracings	100
	4.0 Haemodynamic Information Available from the Im-	
	pedance Tracings	100
	5.0 Origin of the Impedance Waveforms	101
	6.0 The Diagnostic Value of the Impedance Waveforms.	104
	7.0 The Value of Impedance Monitoring During Stress	
	Testing	105
	Testing	
	Occlusion Plethysmography for the Measurement of	
	Limb Blood Flow	106
	9.0 Impedance Monitoring for the Detection of Deep Vein	200
	Thrombosis	109
	10.0 The Indirect Measurement of Limb Blood Pressure	107
	from the Impedance Tracings	109
		110
	References	110
	A ST Symbol &	
5.	ESTIMATION OF THE NUTRIENT SKIN BLOOD	
	BLOOD FLOW USING A NON-INVASIVE SEG-	
	MENTED THERMAL CLEARANCE PROBE	
	G. Holti and K. W. Mitchell	
	1.0 Introduction	113
	2.0 Construction of the Probe	114
	3.0 Transducer Recorder Circuitry	116
	4.0 Technical Performance	117
	5.0 Method of Using Probe	120

	CONTENTS				3 8	хi
6.0	Sample Results					120
7.0	Discussion	- 10	. •			100
8.0	Summary .		•	•	•	
. 1 3	Discussion	•		•	•	122
	Appendix	•	• . • .	•	•	123
	rippetidia	•	•	•	•	123
	OTOELECTRIC PLETHYSMOG FIMATING CUTANEOUS BLOOM A. V. J. Challoner			OR		
	Introduction			٠.		125
2.0						125
3.0	Review of the Literature					127
4.0	Discussion of the Principles and the	Metho	d.			130
5.0	Design of the Probe Head for Use	in Ph	otoelec	tric		
	Plethysmography				٠.	136
6.0	Measurement Circuit and Technique					
8.0	Practical Application of the Method	•	•	•		145
0.0	Effect of Blood O ₂ Saturation . Practical Application of the Method Summary and Conclusions	•		•	٠,	147
9.0	References				•	148
	References	•	•	•	•	140
7. UL	TRASONIC DOPPLER VELOCIM V. C. Roberts and A. J. Sainz	ETRY	7			
1.0	Introduction					153
2.0	Blood Pressure Measurement					153
23.3						156
4.0	Blood Velocity Measurement Pulsed Wave Doppler Systems		tro i			166
5.0	Vessel Imaging					168
6.0	Applications of Ultrasonic Velocimet	rv .				169
7.0	Conclusions	-	•	•	•	171
7.0	Conclusions			•	•	172
		•	•	•	•	
VE	REBRAL BLOOD FLOW MEASURINOUS OCCLUSION PLETHYSM E NEWBORN HUMAN INFANT R. W. I. Cooke and P. Rolfe Introduction	IOGR				175
	Background					170

CONTENTS

3.0	Venous Occlusion Pl	lethysr	nograp	hy of	the	Newbo	rn		~
	Head								176
4.0	Clinical Experience Conclusions							٠٠.	185
	Conclusions								188
	References								190
						D . O			
	ON-INVASIVE BLO	OOD	PRES	SURE	M	EASU.	KE-		
M	ENT					12			
	C. A. Greatorex								
1.0	Introduction .							412	193
	Indirect Techniques	•			•	•	·		
3.0	Automatic Equipmen		•		•			•	
3.0	Automatic Equipmer Pneumatic Systems Detection Systems				•	•	٠,	•	200
4.0	Detection Contains			•	•		•	•	200
5.0	Detection Systems		•				•		207
0.0	Recent Development	s.		٠.	•		•		207 208
7.0	Recent Development Conclusions			•	•		•		
	References			•	•	•	•		209
10. PI	HONOCARDIOGRA	PHY	PHY	SICA	L	AND			
	ECHNICAL ASPEC'								
	J. Verburg and E. va								. 1
	J. Verburg and D. Va								
1.0	Introduction .					٠.			213
	Genesis of Heart Son	ınds a	nd Mu	rmurs					214
3.0	Mechanocardiograph	v .							220
4.0	Transmission of Vih	rations			i,				222
5.0	Transmission of Vib Heart Sound Microp Filters, Amplifiers as	hones	• • • •		٠.	- 6	•	in a second	226
5.0	Filtors Amplifors of	od Dec	ordere	•	•			•	241
7.0	Clinical Value	iu Nec	orucis	•				· Les •	247
· · · · · ·	Clinical Value . References		•	.*	•		•		252
191	References	•••	y., */	•	•	: - · · · · · · ·	• , ,		232
	•						to it		
11 N	ON-INVASIVE DE	EEP 1	RODY	TEN	/IPF	RATU	RE		
	EASUREMENT		,						
141	T. Togawa								
1.0	Introduction .	\$10.0						٠.	261
20	I Kasic Principles								262
3 (Deep Body Thermon	meter							263
4.0	Deep Body Thermon Accuracy and Respon	nse Ch	naracte	istics	-		- 1		267
5.0	Annlications	01			•	•			271
3.0	Applications	• • •		•	•				277
	References			•		•			2,,

	CONTENTS	xiii
		XIII
	12. MEASUREMENT OF EVAPORATIVE WATER LOSS: METHODS AND CLINICAL APPLICATIONS	
	G. E. Nilsson and P. A. Öberg	
	1.0 Introduction	279
		280
	3.0 Basic Principles for Measurement of Evaporative	. 200
		. 281
		297
	References	306
	References	300
	w 1	
	13. TRANSCUTANEOUS MEASUREMENT OF PO,	
	USING ELECTROCHEMICAL ANALYSIS	
	R. Huch, A. Huch and P. Rolfe	
	Se and an and an	
	1.0 Introduction	313
	2.0 Theoretical Background	316
	2.0 Theoretical Background	322
	4.0 Operational Procedures	323
	5.0 Clinical Experience	325
	6.0 Conclusions	329
	References	329
	14. THE APPLICATION OF MASS SPECTROMETRY	*
	TO TRANSCUTANEOUS BLOOD GAS ANALYSIS	
	D. Delpy and D. Parker	
	1.0 Introduction	333
	2.0 General Design Considerations	334
	3.0 Transcutaneous Probe Design	335
	4.0 Results	337
	4.0 Results	341
	5.0 Discussion	2/12
	6.0 Conclusion	343 343
	References	343
	SUBJECT INDEX	345
	ne ne negme or di did the media a vivil vi	3.0
21	* a * * * * * * * * * * * * * * * * * *	

. r

1. AN INTRODUCTION TO NON-INVASIVE CARDIO-DIAGNOSTIC TECHNIQUES

D. Longmore

The National Heart Hospital, London, England

Diagnosis in medicine has for centuries depended on artistry and skill. Until the latter part of the last century, the only available instruments for assessing the internal functions of the body were tubes designed for looking into every available orifice and the stethoscope. The only alternative was the cold white light of surgery with all its attendant risks and pain. The final confirmation of diagnosis was made in the post-mortem room. Developments of surgery in the twentieth century created an urgent need for improved diagnostic techniques.

Nowhere has surgical technique leapt ahead of diagnostic skills more rapidly than in the field of cardiac surgery. Sir Henry Souttar's first operations on the mitral valve in the heart at the London Hospital in 1923 failed not because of poorly conceived operative procedures, but because he operated on patients with a diagnosis of mitral stenosis—narrowing of the valve; the valve disease was in fact mixed with some narrowing of the valve and, more importantly, mitral regurgitation with blood leaking through the improperly closing valve, which was accentuated by his operation. Even today, with improved post-operative care, the wrong cardiac surgical operation, which makes the circulation less efficient or an inadequate correction of a defect combined with the effects of the operation, may end with a dead patient. In Souttar's day, when management of the opened chest was less adequate, it was not surprising that his patients succumbed.

Hypothermia, utilizing surface cooling of the body to slow down metabolic processes, was the first technique to be used widely in cardiac

surgery. This enabled surgeons to arrest the circulation for just long enough to repair a simple defect. With only four to eight minutes of safe operating time inside the heart, clinicians had to differentiate between operable lesions like the sucundum atrial septal defects and the clinically similar, but then virtually inoperable, ostium primum septal defects. At best an error meant an unnecessary operation. The differential diagnosis was achieved by painstaking astute clinical observation using the time-honoured routine: a detailed case history; inspection of the patient; palpation and percussion of the chest; and auscultation, aided by the oldest non-invasive instrument, the stethoscope. Clinical diagnosis had reached its zenith. The electrocardiogram, a non-invasive instrument developed before the turn of the century, could, when the case was typical, give useful confirmatory evidence.

By the late 1950s the heart-lung machine made it possible to open the last unexplored cavities in the human body—the ventricles of the heart—for long enough to perform more beneficial surgical procedures. Open cardiac surgery became a safe practical routine by the mid 1960s.

At that time there was a great tradition of clinical cardiology. In skilled hands this diagnostic art was remarkably accurate. The whole art depended on time-consuming, meticulous clinical observation of sign and symptom. Greater credit should be given to these painstaking clinicians than is generally accorded to them. They described in detail most of the clinical entities which we now recognize, and explore with our new generation of non-invasive instruments. Nevertheless, the reliability of diagnosis was inadequate to support tens of thousands of heart surgery cases. The response to the need for accurate anatomical diagnosis in quantity was met by physicians and physiologists with the development of the cardiac catheter X-ray laboratory.

The cardiac catheter is a narrow bore, radio-opaque tube which can be threaded under X-ray screening control into various chambers of the heart. Several alternative techniques can be used to explore the heart. The lumen of the catheter can be connected to a pressure transducer to determine the pressures in the heart and great vessels. Samples can be withdrawn to assess the oxygen content of blood at various sites. Radio-opaque material can be injected to visualize the anatomy of the chamber into which the injection is made and to visualize the chambers into which the flow of blood carries the bolus of dye-containing blood. The catheter may be threaded into the right side of the heart, from a convenient arm, leg or neck vein. At first, catheterizations were confined to the right side of the heart unless the patients had defects in the septum through which the catheter could pass. Some information about the left side of the heart could be derived by advancing the catheter up the pulmonary artery and wedging it in a small pulmonary artery branch. The end hole in the

catheter would then be in communication through the pulmonary capillary bed with the left atrium, producing a damped left atrial pressure. Techniques soon evolved which enabled the catheter to be threaded into the left side of the heart. This has been done by several routes. Each of the methods involves risk to the patient which is additional to the hazard of exposure to X-ray and infection. Some routes which have been used are from the left main bronchus through a bronchoscope, directly through the chest wall and retrogradely via an artery through the aortic and mitral valves.

The amount of information about the anatomy of the heart which can be obtained with the aid of the injection of radio-opaque substances, rapid X-ray film changers and cine X-rays produce remarkably accurate anatomical diagnosis.

The mortality rates in catheter diagnosis laboratories have continued to fall. In good centres death occurs in one case per several thousand. Nevertheless, there has been one recently reported series with a 12% mortality rate from some cardiac catheterization from centres in the USA. Even in the best centres there is a significant morbidity associated with cardiac catheterization. Some pain is also inevitable. Each right-sided procedure places in jeopardy a vein which may be a lifeline for a patient undergoing major surgery in future. The future of patient exposure to diagnostic X-rays is unclear. A single session in a catheter laboratory will expose a patient to a dose of X-rays which is orders of magnitude in excess of the dose acceptable for a worker in the nuclear power industry over a lifetime. Catheterization of the heart is reserved for patients who are being assessed for cardiac surgery.

Nevertheless, any case for a new cardio-diagnostic system must not be based on negative reasons. A new case is emerging for the development of non-invasive instrumentation, arising from the excellence of the catheter laboratories themselves.

A surgeon can be reasonably sure that at operation he will see the anatomical configuration which the cardiologist has described. What he cannot be sure of is that the patient will survive the correction of the defects. Additional information to inform the surgeon about the state of the contractile element of the heart, the muscle in the left ventricle on which the patient's life depends, is required.

A new diagnostic concept has to be understood before the potential of non-invasive instruments can be appreciated. They produce a different type of information from that which is obtained in the catheter laboratory. Non-invasive instruments give information about movements of blood, the performance of the contractile element of the heart muscle, and they measure mechanical phenomena. They do not produce images. In engineering terms, they do not provide a view of the inside of an engine,

the state of the piston rings, the valves, etc., they give performance data, power outputs and fuel consumption figures. Contemporary diagnostic instruments produce good images and poor performance figures.

Mechanical performance data represent the information which is probably best produced by non-invasive instruments. Mechanical data can only be obtained from the catheter results by painstaking measurement and

computer analysis of angiocardiographs and pressure traces.

The natural history of cardiac disease is not fully understood. The reasons for the ten-fold increase in death from coronaries in the UK since the 1930s are not known. Population screening to define the natural history of cardiac disease, to identify the patients who are developing the disease and, most importantly, to monitor the effectiveness of any preventive measures which might be postulated, must be seriously considered in the near future to meet public demand. Clearly any population monitoring will have to be based on non-invasive instrumentation.

Unfortunately, non-invasive instruments in their present state of development are not capable of meeting the diagnostic tasks required of them. Rarely can a single non-invasive instrument at the present time add enough information to clinical diagnosis to eliminate the need for cardiac catheterization; sophisticated echo-cardiographic equipment is perhaps showing the greatest potential for non-invasive final diagnosis. Certainly no single existing instrument can be used to screen for the presence of early manifestations of cardiac disease and none in their present state can be used alone to follow the progress of established disease.

The medical profession is being forced to consider more widespread use of non-invasive techniques by a number of factors: public demand; pressure from instrument manufacturers extolling the virtues of their instruments; insistence from bio-engineers that their inventions and developments actually work; the high and increasing cost of catheter laboratories; the difficulty of recruiting staff who are prepared to work in areas where radiation is used; the lobby which is arising out of the awareness that even the small doses of irradiation given for chest X-rays may be damaging to the heart; and doubtless for many other reasons less tangible which influence the progress of medicine, such as the climate of political opinion. The protagonists of non-invasive instrumentation for non-invasive cardio-diagnosis have a challenge to face. Are their efforts measuring up to the potential demand?

Many non-invasive instruments available today have not been fully validated and are, therefore, probably not fully developed. The validation and subsequent development of the instruments are being delayed by a combination of vested interests and lack of training of young cardiologists in their use, due to the inevitable inertia in medicine. Furthermore, the present research effort is only a fraction of that which is desirable in

relation to clinical need. The biggest single cause of death in the working population, the disease with the most rapidly increasing mortality and morbidity in the western world deserves a bio-engineering effort to

develop non-invasive instruments in proportion to the need.

Before the development of the catheter laboratory, diagnosis had always depended on the integration of small amounts of information from many different sources. The fact that the catheter laboratory produces so much comprehensive and accurate diagnostic information in one session has created a climate of opinion in which physicians tend to seek comprehensive and accurate information from a single instrument. With the possible exception of very sophisticated echo-cardiographic equipment, no such non-invasive instrument exists. No single non-invasive instrument gives hard, factual information about cardiac performance, and no single instrument gives information about the whole cardiac cycle. Perhaps too much is being asked of relatively weak instruments which give only circumstantial evidence about the mechanical performance of part of the contraction or relaxation cycle or the heart muscle. In other walks of life it is commonplace to build up a complete picture from a mass of circumstantial evidence. The western world is used to commenting on and analysing the behaviour of half of the world's population with considerable accuracy, with no direct access to data from the Government. "China Watchers" piece together shreds of evidence to build a complete picture. Police officers throughout the world do not expect the criminal to leave a statement of his identity and whereabouts at the scene of the crime. They expect to build up a case from a mass of circumstantial pieces of information, each one on its own providing only an indication as to who the criminal might be. A haematologist will examine a blood stain, a biochemist will do enzyme studies on a body secretion, the trichologist will study a hair, a finger-print expert the imprint of the suspect's hands, a detective will study a foot print or a tyre mark, a fabric expert a shred of material, and so on, until evidence is complete. It should be possible to combine the comparatively soft data from the large number of different non-invasive cardio-diagnostic instruments available now, and obtain some "hard" facts. In order to do this, there are three stages of evaluation to be undertaken. Each instrument has to be validated against known fact. Does its output really relate in a constant and predictable way to the performance of the heart? Or is its output a meaningless jumble of signals? If strict criteria are to be applied to the evaluation of new instruments consideration must be given to established practice. If the ECG had not been discovered at the end of the last century and it were a new discovery of 1979, it would be unlikely that it would be accepted by present-day clinicians. Modern recorders capable of reproducing highfrequency signals would produce a very different signal to the simple