

UNDERSTANDING EARTH

FOURTH EDITION

FRANK PRESS

The Washington Advisory Group

RAYMOND SIEVER

Harvard University

JOHN GROTZINGER

Massachusetts Institute of Technology

THOMAS H. JORDAN

Univehusetts Institute of Technia

W. H. Freeman and Company New York PUBLISHER: SUSAN FINNEMORE BRENNAN

ACQUISITIONS EDITOR: VALERIE RAYMOND

DEVELOPMENT EDITOR: RANDI ROSSIGNOL

NEW MEDIA/SUPPLEMENTS EDITOR: REBECCA PEARCE

MARKETING MANAGER: MARK SANTEE

PROJECT EDITOR: MARY LOUISE BYRD

COVER AND TEXT DESIGNER: VICTORIA TOMASELLI

COVER PHOTOGRAPH: ART WOLFE

ILLUSTRATIONS: JOHN WOOLSEY

ILLUSTRATION COORDINATOR: BILL PAGE

PHOTO EDITOR: MEG KUHTA

PHOTO RESEARCHER: ELYSE RIEDER

PRODUCTION COORDINATOR: JULIA DEROSA

COMPOSITION: SHERIDAN SELLERS, W. H. FREEMAN AND COMPANY,

ELECTRONIC PUBLISHING CENTER

PRINTING AND BINDING: RR DONNELLEY & SONS COMPANY

Library of Congress Cataloging-in-Publication Data Press, Frank

Understanding earth / Frank Press . . . [et al.].—4th ed.

p. cm.

Includes bilbiographical references and index.

ISBN 0-7167-9617-1

1. Earth sciences. I. Title.

QE28.P9 2003

2003049090

550-dc21

© 1995, 1998, 2001, and 2004 by W. H. Freeman and Company. All rights reserved

Printed in the United States of America

First printing 2003

W. H. Freeman and Company

41 Madison Avenue

New York, NY 10010

Houndmills, Basingstoke RG21 6XS, England

www.whfreeman.com

MEET THE AUTHORS

Frank Press

Frank Press has made pioneering contributions to the fields of geophysics, oceanography, lunar and planetary sciences, and natural resource exploration. He was a member of the team that discovered the fundamental difference between oceanic and continental crust and built the instruments used in the research. Dr. Press was on the faculties of Columbia University, the California Institute of Technology (Caltech), and the Massachusetts Institute of Technology (MIT). In addition, he served as president of the U.S. National Academy of Sciences and as a senior fellow at the Department of Terrestrial Magnetism, Carnegie Institution of Washington. He is currently with The Washington Advisory Group. In 1993, Frank Press was awarded the Japan Prize by the emperor for his work in the Earth sciences.

Dr. Press has advised four presidents on scientific issues. Jimmy Carter appointed him Science Advisor to the President. Bill Clinton awarded him the National Medal of Science. Three times, *U.S. News & World Report* surveys named him the country's most influential scientist.

John Grotzinger

John Grotzinger is a field geologist interested in the evolution of Earth's surficial environments and biosphere. His research addresses the chemical development of the early oceans and atmosphere, the environmental context of early animal evolution, and the geologic factors that regulate sedimentary basins. He has contributed to the basic geologic framework of a number of sedimentary basins and orogenic belts in northwestern Canada, northern Siberia, southern Africa, and the western United States. These field-mapping studies are the starting point for more topical laboratorybased studies involving geochemical, paleontological, and geochronological techniques. He received a B.S. in geoscience from Hobart College in 1979, an M.S. in geology from the University of Montana in 1981, and a Ph.D. in geology from Virginia Tech in 1985. He spent three years as a research scientist at the Lamont-Doherty Geological Observatory before joining the MIT faculty in 1988. From 1979 to 1990, he was engaged in regional mapping for the Geological Survey of Canada.

In 1998, Dr. Grotzinger was named the Waldemar Lindgren Distinguished Scholar at MIT and in 2000 became the Robert R. Shrock Professor of Earth and Planetary Sciences. In 1998, he was appointed director of MIT's Earth Resources Laboratory. He received the Presidential Young Investigator Award of the National Science Foundation in 1990, the Donath Medal of the Geological Society of America in 1992, and the Henno Martin Medal of the Geological Society of Namibia in 2001. He is a member of the American Academy of Arts and Sciences and the U.S. National Academy of Sciences.

Raymond Siever

Raymond Siever is an internationally known expert in sedimentary petrology, geochemistry, and the evolution of oceans and the atmosphere. Dr. Siever is a long-time member of Harvard University's Department of Earth and Planetary Sciences, and he chaired the geology department for eight years. He was one of the first sedimentologists to apply the techniques of geochemistry to the study of sedimentary rocks, especially sandstones and cherts.

In addition to cowriting the popular geology text *Earth* with Frank Press, Dr. Siever wrote (with F. J. Pettijohn and Paul Potter) the classic textbook *Sand and Sandstone* (Springer-Verlag). Dr. Siever is a Fellow of the Geological Society of America and the American Academy of Arts and Sciences and has been honored with distinguished awards from the Society of Sedimentary Geology, the Geochemical Society, and the American Association of Petroleum Geologists.

Thomas H. Jordan

Tom Jordan is a geophysicist whose interests include the composition, dynamics, and evolution of the solid Earth. He has conducted research into the nature of plate tectonic return flow, the formation of a thickened tectosphere beneath the ancient continental cratons, and the question of mantle stratification. He has developed a number of seismological techniques for elucidating structural features in the Earth's interior that bear on these and other geodynamic problems. He has also worked on modeling plate motions, measuring neotectonic deformations in plate-boundary zones, quantifying various aspects of seafloor morphology, and characterizing large earthquakes. He received his Ph.D. in geophysics and applied mathematics at Caltech in 1972 and taught at Princeton University and the Scripps Institution of Oceanography before joining the MIT faculty as the Robert R. Shrock Professor of Earth and Planetary Sciences in 1984. He served as the head of MIT's Department of Earth, Atmospheric and Planetary Sciences for the decade 1988-1998. He recently moved from MIT to the University of Southern California (USC), where he is the W. M. Keck Professor of Geological Sciences and Director of the Southern California Earthquake Center.

Dr. Jordan received the James B. Macelwane Medal of the American Geophysical Union in 1983 and the George P. Woollard Award of the Geological Society of America in 1998. He is a member of the American Academy of Arts and Sciences, the U.S. National Academy of Sciences, and the American Philosophical Society.

New Voices

It has been said that science is a history of superseded theories. New theories and innovative approaches to research and teaching are mostly the work of the next generation of scientist-authors. John Grotzinger of MIT and Tom Jordan of USC have joined the author team and will succeed Frank Press and Raymond Siever in future editions. We are lucky to partner with colleagues who share the philosophy and idealism represented in our book and bring a vision of the future to it as well. John's and Tom's influence is apparent in every chapter of the book and in its overall reorganization, most is evident in the prominent Earth systems approach and in the early coverage of plate tectonic theory.

A New Vision

When the first edition of *Earth* was published, the concept of plate tectonics was still new. For the first time, an allencompassing theory could be used as a framework for learning about the immense forces at work in Earth's interior. Given this new paradigm, our strategy was to make the learning of Earth science as process-based as possible. This new picture of Earth as a dynamic, coherent system was central to *Earth* and to its successor, *Understanding Earth*.

Now, with *Understanding Earth*, Fourth Edition, we are taking another step forward. One might characterize it as an attempt to answer the question: what comes after plate tectonics? We present geology as a unified, process-based science with the power to convey global meaning to geologic features wherever they are found. To do so, we draw on powerful new laboratory and field tools and new theoretical approaches.

New technology such as GPS and continuous satellite monitoring of Earth from space allows us to view plates in motion, mountains being raised and eroded, crustal strain building up before an earthquake, global warming, glaciers retreating, sea level rising—all in almost real time. It is remarkable that we can now use earthquake waves to image the flow of the solid mantle hundreds and thousands of kilometers deep, revealing patterns of rising plumes and sub-

ducting plates. These new technologies also reveal startling new insights into links between climate and tectonics that have been poorly understood in the past, such as the possibility that the flow of metamorphic rocks through mountain belts may be strongly influenced by surface weathering patterns. The view of Earth as a system of interacting components subject to interference by humankind can no longer be called ideologically based opinion—it is backed by solid scientific evidence. The power of geology has never been greater. Geological science now informs the decisions of public policy leaders in government, industry, and community organizations.

Early Coverage of Plate Tectonics

Chapter 2, Plate Tectonics: The Unifying Theory, allows us to take full advantage of tectonic theory as a framework for discussing key geologic processes. Early coverage of the basic tenets of tectonic theory means that the theory can be invoked throughout the text, providing the big picture as well as the link connecting geologic phenomena. For instance, Chapter 4 now presents metamorphism in terms of plate interactions, Chapter 8 offers a new section on plate tectonics and sedimentary basins, and Chapter 9 has a significantly

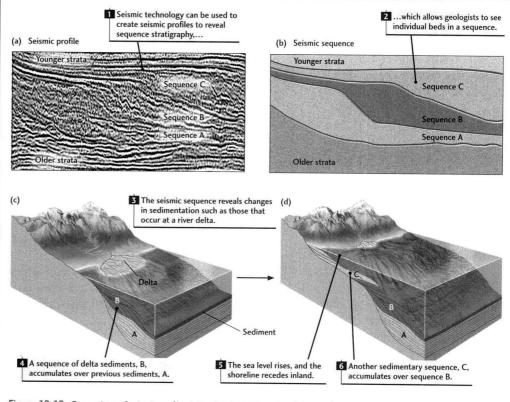


Figure 10.10 Comparison of seismic profiles (a) with seismic sequences (b), reveals the depositional process that creates bedding patterns. When tectonic subsidence or events such as global climate change have caused the sea level to rise, two deltaic sequences are found (c and d).

updated section on pressuretemperature-time paths and their significance for interpreting tectonic processes, including exhumation and uplift. The section of the book dedicated to surface processes is capped with a revised Chapter 18, in which landscape evolution integrates previous chapters and makes the case for significant interactions between climate and tectonics. This process-based treatment of a revitalized branch of Earth science is made possible only by having introduced plate tectonics early on.

Viewing Earth as a System

We begin with an expanded discussion of the Earth system in Chapter 1. The components of the Earth system are described, and the exchanges of energy and matter through the system are illustrated. This discussion serves as the springboard for the Earth systems perspective that pervades the text.

Chapter 5, Igneous Rocks: Solids from Melts, now includes a section entitled Spreading Centers as Magmatic Geosystems.

Volcanoes (Chapter 6) are discussed as geosystems, coupled to plate motions and interacting with the atmosphere, the oceans, and the biosphere.

The discussion of weathering in Chapter 7 emphasizes the relationship between the climate geosystem and weathering. In Chapter 9, Metamorphism; Chapter 18, Landscape Evolution; and Chapter 19, Earthquakes, we stress the interactions among metamorphism, climate, plate tectonics, and the earthquake behavior of regional fault systems.

Chapter 21 delves into the convective engines of Earth's deep interior, which drive the plate tectonic and geodynamo systems.

Chapter 23 concludes with a discussion of how greenhouse gas emissions from fossil-fuel burning and other human activities may be changing Earth's climate system.

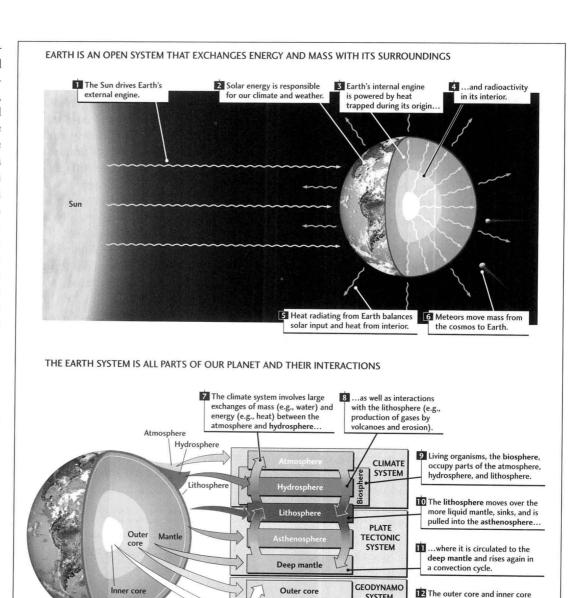


Figure Story 1.10 Major components and subsystems of the Earth system (see Table 1.2). Interactions among the components are powered by energy from the Sun and the planetary interior and organized into three global geosystems: the climate system, the plate tectonic system, and the geodynamo system.

Asthenosphere

New Topics and Updates Throughout

Inner core

· New material on exoplanets, early introduction of Earth system concepts, and a new section on Earth through geologic time (Chapter 1)

SYSTEM

interact in the geodynamo

Earth's magnetic field.

system that is responsible for

- · A new section on spreading centers as magmatic geosystems (Chapter 5)
- · A new section on volcanoes as geosystems, new material on large igneous provinces, and updated coverage of hot spots and the mantle plume hypothesis (Chapter 6)
- · New sections on coral reefs and the evolutionary process and on plate tectonics and sedimentary basins (Chapter 8)

- · Updated coverage of pressure-temperature paths (Chapter 9)
- · Updated material on dome and basin formation (Chapter 11)
- · New material on ice streaming, the instability of the West Antarctic ice sheet, and Snowball Earth (Chapter 16)
- Updated discussions of seafloor topography and methods for surveying the seafloor (Chapter 17)
- · New sections on foreshocks and aftershocks, shaking intensity, plate boundaries and earthquakes, and regional fault systems (Chapter 19)
- · An updated chapter on continental evolution, with a strong focus on North America that brings together recent insights about the history of mountain building and the formation of stable cratons (Chapter 20)
- · An updated chapter on the deep interior, including new sections on mantle tomography, the geoid, and the geodynamo (Chapter 21)
- · A completely revised chapter on Earth's environment and human impacts (Chapter 23)

Telling Stories with **Words and Pictures**

The most visible improvement in this new edition is the artwork. Our enduring goal to tell a story rather than provide aggregated facts is now apparent in the illustrations, particularly the new Figure Stories. Figure Stories bring photographs, line drawings, and text together to walk students through the major ideas behind important geologic processes.

Many more illustrations pair photographs and maps with schematics, so that students will see the context for

the geologic phenomena as well as the underlying geologic features of what we can see with our eyes. Finally, much more descriptive text appears in the illustrations to help point students to their most important features.

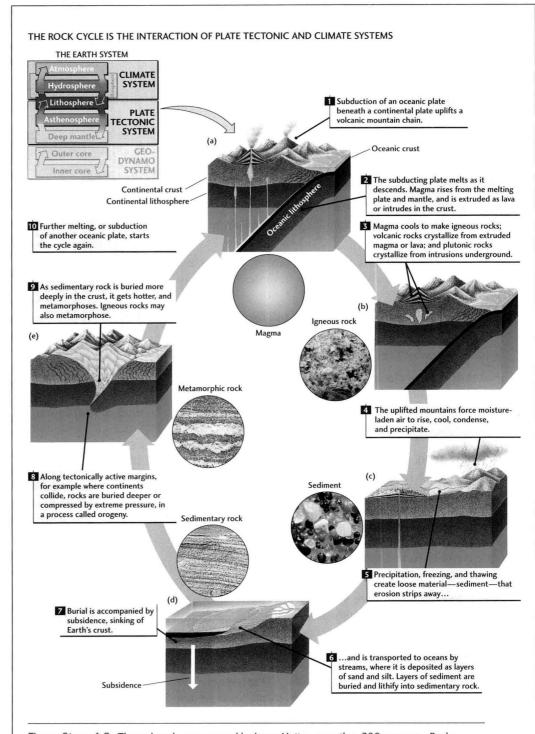


Figure Story 4.9 The rock cycle, as proposed by James Hutton more than 200 years ago. Rocks subjected to weathering and erosion form sediments, which are deposited, buried, and lithified. After deep burial, the rocks undergo metamorphism, melting, or both. Through orogeny and volcanic processes, rocks are uplifted, only to be recycled again. [Igneous (granite): J. Ramezani. Metamorphic (gneiss): Breck P. Kent. Sedimentary (sandstone): Breck P. Kent. Sediment (loose sand and gravel): Rex Elliott.]

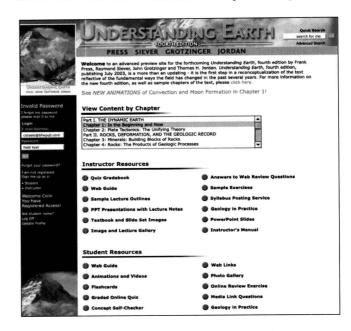
Media and Supplements Package

A selection of electronic media and printed supplementary materials designed to support both instructors and students is available to users of this new edition of Understanding Earth. By focusing primarily on the importance of visualizing key concepts in geology, we are providing instructors with the presentation tools they need to help their students truly understand Earth's processes, and students with the study tools they need to study geology effectively and apply their newly acquired knowledge.

For Instructors

The Instructor's Resource CD-ROM (ISBN 0-7167-5782-6) contains

- · High-resolution PowerPoint presentations, organized by chapter, that include every figure and table from the text
- · PowerPoint presentations with Lecture Notes prepared by Peter Copeland and William Dupré of the University of Houston
- High-resolution JPEGs of every image in the text and from the Slide Set (including images from the slide sets of previous editions)
- · Microsoft Word files of the Test Bank for easy editing and printing
- · Adobe Acrobat files of the Instructor's Manual
- · Animations, including over 40 new Macromedia Flash animations of the actual textbook figures that can be easily incorporated into PowerPoint presentations
- · Short videos


The Test Bank (ISBN 0-7167-5784-2 [print] and ISBN 0-7167-5783-4 [CD-ROM]), written by Simon M. Peacock of Arizona State University and Sondra Peacock, includes approximately 50 multiple-choice questions for each chapter (over 1000 total), some of which incorporate illustrations from the text. The CD-ROM provides the Test Bank files in an electronic format that allows professors to edit, resequence, and add questions.

The Instructor's Resource Manual (ISBN 0-7167-5781-8), written by Peter Kresan and Reed Mencke of the University of Arizona, includes chapter-by-chapter sample lecture outlines, ideas for cooperative learning activities and exercises that can be easily copied and used as handouts and quizzes, and guides to the Web and Instructor's CD resources. The Instructor's Manual also includes an instructional design section that contains teaching tips from many instructors at the University of Arizona Learning Center. The Instructor's Manual is also available on both the Instructor's CD and the Companion Web Site.

The Overhead Transparency Set (ISBN 0-7167-5780-X) includes every textbook figure and table in full-color acetate transparencies.

The Slide Set with Lecture Notes (ISBN 0-7167-5779-6), prepared by Peter Kresan of the University of Arizona, contains approximately 100 additional images that are all fully annotated in the accompanying booklet of lecture notes.

The Companion Web Site at www.whfreeman.com/ understandingearth provides access to all student materials on the Web site in addition to a password-protected

Instructor's site that contains all the PowerPoint presentations and JPEGs available on the Instructor's CD, the Instructor's Manual, and the Quiz Gradebook (which keeps track of students' Graded Online Quiz scores).

For Students

The Companion Web Site* at www.whfreeman. MEDIALINK com/understandingearth includes many study tools that allow students to visualize geological processes and practice their newly acquired knowledge. The Companion Web Site contains

- Animations, including more than 40 new animated figures from the textbook
- · Online Review Exercises, which include interactive exercises, virtual reality field trips, drag-and-drop exercises, and matching exercises
- · Flashcards
- Online Quizzing
- · Concept Self-Checker
- · Geology in Practice exercises, inquiry-based learning activities that ask students to apply their newly acquired knowledge and think like geologists

^{*}The Student Companion Web Site is also available on request as a CD-ROM. Please contact your W. H. Freeman Sales Representative for more details.

- Photo Gallery, additional photographs of geologic phenomena
- Current Events in Geology, an archive of geologically relevant articles from popular news sources, updated monthly

The **Student Study Guide** (ISBN 0-7167-5776-1), written by Peter Kresan and Reed Mencke of the University of Arizona, includes tips on studying geology, chapter summaries, practice exams, and practice exercises that incorporate figures from the text and Web resources.

The **Lecture Notebook** (ISBN 0-7167-5778-8) is a work-book containing all the figures from the text in black and white with space for students to take notes.

The EarthInquiry series, developed by the American Geological Institute in collaboration with experienced geology instructors, is a collection of Web-based investigative activities that provides a direct way for students to explore and work with the vast amount of geological data now accessible via the Web. Covering such diverse topics as earthquakes and plate boundaries and the recurrence interval of floods, each EarthInquiry module asks students to analyze real-time data in order to develop a deeper understanding of fundamental geoscience concepts. Each module consists of a password-protected Web component and an accompanying workbook.

For more information about EarthInquiry, or to read about the various modules currently available, please visit: www.whfreeman.com/earthinquiry.

Acknowledgments

It is a challenge both to geology instructors and to authors of geology textbooks to compress the many important aspects of geology into a single course and to inspire interest and enthusiasm in their students. To meet this challenge, we have called on the advice of many colleagues who teach in all kinds of college and university settings. From the earliest planning stages of each edition of this book, we have relied on a consensus of views in designing an organization for the text and in choosing which topics to include. As we wrote and rewrote the chapters, we again relied on our colleagues to guide us in making the presentation pedagogically sound, accurate, and accessible and stimulating to students. To each one we are grateful.

The following instructors were involved in the planning or reviewing stages of this new edition:

Jeffrey M. Amato

New Mexico State University

Suzanne L. Baldwin

Syracuse University

Charles W. Barnes

Northern Arizona University

Carrie E. S. Bartek

University of North Carolina, Chapel Hill

Roger Bilham

University of Colorado

Michael D. Bradley

Eastern Michigan University

George R. Clark

Kansas State University

Mitchell Colgan

College of Charleston

Yildirim Dilek

Miami University

Craig Dietsch

University of Cincinnati

Grenville Draper

Florida International

University

Pow-foong Fan

University of Hawaii

Mark D. Feigenson

Rutgers University

Katherine A. Giles

New Mexico State University

Michelle Goman

Rutgers University

Julian W. Green

University of South Carolina, Spartanburg

Jeff Greenberg

Wheaton College

David H. Griffing

University of North Carolina

Douglas W. Haywick

University of Southern Alabama

Michael Heaney III

Texas A&M University

Alisa Hylton

Central Piedmont Community College

James Kellogg

University of South Carolina at

Columbia

David T. King, Jr.

Auburn University

Jeff Knott

California State University at

Fullerton

Richard Law

Virginia Tech

Patricia D. Lee

University of Hawaii, Manoa

Laurie A. Leshin

Arizona State University

Kelly I in

Kansas State University

J. Brian Mahoney

University of Wisconsin, Eau Claire

Bart S. Martin

Ohio Wesleyan University

Gale Martin

Community College of Southern

Nevada

Robert D. Merrill

California State University, Fresno

James Mills

DePauw University

Henry Mullins

Syracuse University

John E. Mylroie

Mississippi State University

Stephen A. Nelson

Tulane University

William Parker

Florida State University

Philip Piccoli

University of Maryland

Loren A. Raymond

Appalachian State University

Mary Jo Richardson

Texas A&M University

Gary D. Rosenberg

Indiana University/Purdue University,

Indianapolis

Malcolm Rutherford

University of Maryland

William E. Sanford

Colorado State University

Donald P. Schwert

North Dakota State University

Thomas Sharp

Arizona State University

Sam Swanson

University of Georgia, Athens

Jody Tinsley

Clemson University

James A. Tyburczy

Arizona State University

Michael A. Velbel

Michigan State University

Elisabeth Widom

Miami University

We remain indebted to the following instructors who helped shape earlier editions of *Understanding Earth:*

Wayne M. Ahr

Texas A & M University

Gary Allen

University of New Orleans

N. L. Archbold

Western Illinois University

Allen Archer

Kansas State University

Richard J. Arculus

University of Michigan, Ann Arbor

Philip M. Astwood

University of South Carolina

R. Scott Babcock

Western Washington University

Evelyn J. Baldwin

El Camino Community College

John M. Bartley

University of Utah

Lukas P. Baumgartner

University of Wisconsin, Madison

Richard J. Behl

California State University, Long Beach

Kathe Bertine

San Diego State University

David M. Best

Northern Arizona University

Dennis K. Bird

Stanford University

Stuart Birnbaum

University of Texas, San Antonio

David L. S. Blackwell

University of Oregon

Arthur L. Bloom

Cornell University

Phillip D. Boger

State University of New York,

Geneseo

Stephen K. Boss

University of Arkansas

Robert L. Brenner

University of Iowa

David S. Brumbaugh

Northern Arizona University

Edward Buchwald

Carleton College

David Bucke

University of Vermont

Robert Burger

Smith College

Timothy Byrne

University of Connecticut

J. Allan Cain

University of Rhode Island

F. W. Cambray

Michigan State University

Ernest H. Carlson

Kent State University

Max F. Carman

University of Houston

Jams R. Carr Universi

University of Nevada

L. Lynn Chyi

University of Akron

Allen Cichanski

Eastern Michigan University

G. S. Clark

University of Manitoba

Roger W. Cooper

Lamar University

Spencer Cotkin

University of Illinois

Peter Dahl

Kent State University

Jon Davidson

University of California, Los Angeles

Larry E. Davis

Washington State University

Robert T. Dodd

State University of New York, Stony Brook

Bruce J. Douglas

Indiana University

Carl N. Drummond

Indiana University/Purdue University,

Fort Wayne

William M. Dunne

University of Tennessee, Knoxville

R. Lawrence Edwards

University of Minnesota

C. Patrick Ervin

Northern Illinois University

Stanley Fagerlin

Southwest Missouri State University

Jack D. Farmer

University of California,

Los Angeles

Stanley C. Finney

California State University,

Long Beach

Charlie Fitts

University of Southern Maine

Tim Flood

Saint Norbert College

Richard M. Fluegeman, Jr.

Ball State University

Michael F. Follo

Colby College

Richard L. Ford

Weaver State University

Nels F. Forsman

University of North Dakota

Charles Frank

Southern Illinois University

William J. Frazier

Columbus College Robert B. Furlong

Wayne State University

Sharon L. Gabel

State University of New York, Oswego

Alexander E. Gates

Rutgers University

Dennis Geist

University of Idaho

Gary H. Girty

San Diego State University

William D. Gosnold

University of North Dakota

Richard H. Grant

University of New Brunswick

Jeffrey K. Greenberg

Wheaton College

Bryan Gregor

Wright State University

G. C. Grender

Virginia Polytechnic Institute and

State University

Mickey E. Gunter

University of Idaho

David A. Gust

University of New Hampshire

Kermit M. Gustafson

Fresno City College

Bryce M. Hand

Syracuse University

Ronald A. Harris

West Virginia University

Richard Heimlich

Kent State University

Tom Henyey

University of Southern California

Eric Hetherington
University of Minnesota

J. Hatten Howard III

University of Georgia

Herbert J. Hudgens
Tarrant County Junior College

Warren D. Huff

University of Cincinnati

Ian Hutcheon
University of Calgary

Mohammad Z. Iqbal

University of Northern Iowa

Neil Johnson

Appalachian State University

Ruth Kalamarides
Northern Illinois University

Frank R. Karner

University of North Dakota

Alan Jay Kaufman University of Maryland

Phillip Kehler

University of Arkansas, Little Rock Cornelius Klein

Harvard University

Peter L. Kresan

University of Arizona Albert M. Kudo

University of New Mexico

Robert Lawrence
Oregon State University

Don Layton

Cerritos College

Peter Leavens
University of Delaware

Barbara Leitner
University of Montevallo

John D. Longshore

Humboldt State University

Stephen J. Mackwell

Pennsylvania State University

Erwin Mantei

Southwest Missouri State

University

Peter Martini

University of Guelph

G. David Mattison

Butte College

Florentin Maurrasse

Florida International University

George Maxey

University of North Texas

Joe Meert

Indiana State University

Lawrence D. Meinert

Washington State University,

Pullman

Jonathan S. Miller

University of North Carolina

Kula C. Misra

University of Tennessee, Knoxville

Roger D. Morton

University of Alberta

Peter D. Muller

State University of New York, Oneonta

J. Nadeau

Rider University

Andrew Nyblade

Pennsylvania State University

Peggy A. O'Day

Arizona State University

Kieran O'Hara

University of Kentucky

William C. Parker

Florida State University

Simon M. Peacock

Arizona State University

E. Kirsten Peters

Washington State University,

Pullman

Donald R. Prothero

Occidental College

Terrence M. Quinn

University of South Florida

C. Nicholas Raphael

Eastern Michigan University

J. H. Reynolds

West Carolina University

Robert W. Ridkey

University of Maryland

James Roche

Louisiana State University

William F. Ruddiman

University of Virginia

Charles K. Scharnberger

Millersville University

James Schmitt

Montana State University

Fred Schwab

Washington and Lee

University

Jane Selverstone

University of New Mexico

Steven C. Semken

Navajo Community College

D. W. Shakel

Pima Community College

Charles R. Singler

Youngstown State University

David B. Slavsky

Loyola University of Chicago

Douglas L. Smith

University of Florida

Richard Smosma

West Virginia University

Donald K. Sprowl University of Kansas

Steven M. Stanley

Johns Hopkins University

Don Steeples

University of Kansas

Randolph P. Steinen

University of Connecticut

Dorothy L. Stout

Cypress College

Bryan Tapp

University of Tulsa

John F. Taylor

Indiana University of Pennsylvania

Kenneth J. Terrell

Georgia State University

Thomas M. Tharp

Purdue University

Nicholas H. Tibbs Southeast Missouri State University

Herbert Tischler

University of New Hampshire

Jan Tullis

Brown University

James A. Tyburczy

Arizona State University

Kenneth J. Van Dellen

Macomb Community College

J. M. Wampler

Georgia Tech

Donna Whitney

University of Minnesota

Elisabeth Widom

Miami University, Oxford

Rick Williams

University of Tennessee

Lorraine W. Wolf

Auburn University

Others have worked with us more directly in writing and preparing manuscript for publication. At our side always were the editors at W. H. Freeman and Company: Randi Rossignol and Valerie Raymond. Mary Louise Byrd supervised the process from final manuscript to printed text. Diana Siemens and Eleanor Wedge were our copyeditor and proofreader. Rebecca Pearce coordinated the media supplements. Vicki Tomaselli designed the text, and Meg Kuhta and Elyse Rieder edited and obtained the many beautiful photographs. We thank Sheridan Sellers, our compositor and layout artist, Julia DeRosa, our production manager, and Bill Page, our illustration coordinator. Special thanks to our illustrator, John Woolsey, for his outstanding ideas and drawings.

First image of the whole Earth showing the Antarctic and African continents, taken by the *Apollo 17* astronauts on December 7, 1972. [NASA.]

BRIEF CONTENTS

CHAPTER 1	Building a Planet	1
CHAPTER 2	Plate Tectonics: The Unifying Theory	23
CHAPTER 3	Minerals: Building Blocks of Rocks	51
CHAPTER 4	Rocks: Records of Geologic Processes	75
CHAPTER 5	Igneous Rocks: Solids from Melts	89
CHAPTER 6	Volcanism	113
CHAPTER 7	Weathering and Erosion	141
CHAPTER 8	Sediments and Sedimentary Rocks	163
CHAPTER 9	Metamorphic Rocks	193
CHAPTER 10	The Rock Record and the Geologic Time Scale	213
CHAPTER 11	Folds, Faults, and Other Records of Rock Deformation	237
CHAPTER 12	Mass Wasting	257
CHAPTER 13	The Hydrologic Cycle and Groundwater	277
CHAPTER 14	Streams: Transport to the Oceans	303
CHAPTER 15	Winds and Deserts	327
CHAPTER 16	Glaciers: The Work of Ice	347
CHAPTER 17	Earth Beneath the Oceans	379
CHAPTER 18	Landscapes: Tectonic and Climate Interaction	407
CHAPTER 19	Earthquakes	427
CHAPTER 20	Evolution of the Continents	457
CHAPTER 21	Exploring Earth's Interior	483
CHAPTER 22	Energy and Material Resources from the Earth	507
CHAPTER 23	Earth's Environment, Global Change, and Human Impacts	541

CONTENTS

Meet the Authors	vii	Physical Properties of Minerals	63
Preface		Minerals and the Biological World	70
Freiace	XV	3.1 Earth Issues What Makes Gems So Special?	64
CHAPTER 1 Building a Planet	1	3.2 Earth Issues	٠.
The Scientific Method	2	Asbestos: Health Hazard, Overreaction, or Both?	69
The Modern Theory and Practice of Geology	3	G. 26tm	0,5
The Origin of Our System of Planets	4	CHAPTER 4 Rocks: Records	
Early Earth: Formation of a Layered Planet	6	of Geologic Processes	75
Earth as a System of Interacting Components	12	Igneous Rocks	77
Earth Through Geologic Time	15	Sedimentary Rocks	78
		Metamorphic Rocks	80
CHAPTER 2 Plate Tectonics:		Where We See Rocks	80
The Unifying Theory	23	The Rock Cycle: Interactions Between the	
The Discovery of Plate Tectonics	23	Plate Tectonic and Climate Systems	83
The Mosaic of Plates	27	Earth's Unique Systems and Rock Cycle	85
Rates and History of Plate Motions	34		
The Grand Reconstruction	40	CHAPTER 5 Igneous Rocks:	
Mantle Convection: The Engine		Solids from Melts	89
of Plate Tectonics	44	How Do Igneous Rocks Differ from	0.0
The Theory of Plate Tectonics and the Scientific Method	47	One Another?	90
2.1 Earth Issues	17	How Do Magmas Form?	95
Drilling in the Deep Sea	37	Where Do Magmas Form?	97
		Magmatic Differentiation	97
CHAPTER 3 Minerals: Building		Forms of Magmatic Intrusions	100
Blocks of Rocks	51	Igneous Activity and Plate Tectonics	104
What Are Minerals?	51		
The Atomic Structure of Matter	52	CHAPTER 6 Volcanism	113
Chemical Reactions	54	Volcanoes as Geosystems	114
Chemical Bonds	55	Volcanic Deposits	114
The Atomic Structure of Minerals	56	Eruptive Styles and Landforms	118
Rock-Forming Minerals	60	The Global Pattern of Volcanism	128

Volcanism and Human Affairs	133	CHAPTER 10 The Rock Record	
6.1 Earth Policy		and the Geologic Time Scale	213
Monitoring Volcanoes	126	Timing the Earth	213
CHAPTER 7 Weathering		Timing the Earth System	214
and Erosion	141	Reconstructing Geologic History Through	
Weathering, Erosion, and the Rock Cycle	141	Relative Dating	215
Why Do Some Rocks Weather More Rapidly Than Others?	142	Isotopic Time: Adding Dates to the Time Scale	225
Chemical Weathering	144	From Three Lines of Evidence:	
Physical Weathering	151	A Reliable Dating Tool	230
Soil: The Residue of Weathering	155	10.1 Earth Issues The Grand Canyon Sequence and Regional Correlation of Strata	
Humans as Weathering Agents	158		226
Weathering Makes the Raw Material of Sediment 7.1 Earth Policy	158	CHAPTER 11 Folds, Faults, and Other Records of Rock	
Soil Erosion	157	Deformation	237
CHAPTER 8 Sediments and		Interpreting Field Data	238
Sedimentary Rocks	163	How Rocks Become Deformed	240
Sedimentary Rocks and the Rock Cycle	164	How Rocks Fracture: Joints and Faults	243
Sedimentary Environments	168	How Rocks Fold	248
Sedimentary Structures	171	Unraveling Geologic History	252
Burial and Diagenesis: From Sediment to Rock	174	CHAPTER 12 Mass Wasting	257
Classification of Clastic Sediments and Sedimentary Rocks	176	What Makes Masses Move?	258
Classification of Chemical and Biochemical		Classification of Mass Movements	264
Sediments and Sedimentary Rocks	179	Understanding the Origins of Mass Movements	271
Plate Tectonics and Sedimentary Basins	187	12.1 Earth Policy	2/1
8.1 Earth Policy Darwin's Coral Reefs and Atolls	182	Reducing Loss from Landslides	262
		and Preventing Landslides	262
CHAPTER 9 Metamorphic Rocks	193		
Metamorphism and the Earth System	194	CHAPTER 13 The Hydrologic Cycle and Groundwater	277
Causes of Metamorphism	195	-	
Types of Metamorphism	196	Flows and Reservoirs	278
Metamorphic Textures	199	Hydrology and Climate	280
Regional Metamorphism and Metamorphic Grade	203	The Hydrology of Runoff Groundwater	282 284
Plate Tectonics and Metamorphism	206	Water Resources from Major Aquifers	292

292	16.1 Earth Issues	
294	Vostok and GRIP: Ice-Core Drilling	750
297		358
280	Future Changes in Sea Level and the Next Glaciation	371
293	CHAPTER 17 Earth Beneath the Oceans	379
	Basic Differences in the Geology of Oceans and Continents	380
		380
304	Continental Margins	386
305	Physical and Chemical Sedimentation	
307		389
700		390
		396
		400
		,,,,
321	CHAPTER 18 Landscapes: Tectonic and Climate Interaction	407
313	Topography, Elevation, and Relief	408
327	Landforms: Features Sculpted by Erosion and Sedimentation	411
327	Interacting Geosystems Control Landscape	417
329	Models of Landscape Evolution	421
332	18.1 Earth Issues	
333		420
338		
	CHAPTER 19 Earthquakes	427
331	What Is an Earthquake?	429
	Studying Earthquakes	431
	Earthquakes and Patterns of Faulting	439
347	Earthquake Destructiveness	443
348	Can Earthquakes Be Predicted?	452
355	19.1 Earth Issues	
361		449
368	Protection in an Earthquake	451
	294 297 280 293 303 304 305 307 308 312 318 321 313 327 329 332 333 338 331	Vostok and GRIP: Ice-Core Drilling in Antarctica and Greenland 16.2 Earth Issues Future Changes in Sea Level and the Next Glaciation 280 CHAPTER 17 Earth Beneath the Oceans Basic Differences in the Geology of Oceans and Continents Geology of the Deep Oceans Continental Margins Physical and Chemical Sedimentation in the Ocean The Edge of the Sea: Waves and Tides Shorelines 17.1 Earth Policy Preserving Our Beaches CHAPTER 18 Landscapes: Tectonic and Climate Interaction Topography, Elevation, and Relief Landforms: Features Sculpted by Erosion and Sedimentation Interacting Geosystems Control Landscape Models of Landscape Evolution 18.1 Earth Issues Uplift and Climate Change: A Chicken-and-Egg Dilemma What Is an Earthquakes Earthquakes and Patterns of Faulting Earthquakes and Patterns of Faulting Earthquake Destructiveness Can Earthquakes Be Predicted? 19.1 Earth Issues Tsunamis 19.2 Earth Issues

CHAPTER 20 Evolution of the		Ore Deposits and Plate Tectonics	530
Continents	457	The Need to Find New Mineral Deposits	533
The Tectonics of North America	458	22.1 Earth Policy Subsurface Toxic and Nuclear Waste Contamination	
Continents Around the World	464		518
How Continents Grow	466	22.2 Earth Policy	
How Continents Are Modified	468	Use of Federal Lands in the United States	524
The Formation of Cratons	477		
The Deep Structure of Continents	478	CHAPTER 23 Earth's Environment, Global Change, and Human	
		Impacts	541
CHAPTER 21 Exploring Earth's	407	The Earth System Revisited	542
Interior	483	The Climate System	544
Exploring the Interior with Seismic Waves	484	Natural Climate Variability	549
Layering and Composition of the Interior	486	Twentieth-Century Warming: Human	
Earth's Internal Heat and Temperature	491	Fingerprints of Global Change?	551
The Three-Dimensional Structure of the Mantle	493	The Carbon Cycle	554
	497	Human Activity and Global Change	558
Earth's Magnetic Field 21.1 Earth Issues	47/	23.1 Earth Issues El Niño: The Wayward Child	553
The Uplift of Scandinavia:	400	23.2 Earth Policy	
Nature's Experiment with Isostasy 21.2 Earth Issues	489	The Kyoto Accords and the Politics	564
The Geoid: Shape of Planet Earth	496	of Global Warming	304
			AD 1
CHAPTER 22 Energy and Material		Appendix 1 Conversion Factors	AP-1
Resources from the Earth	507	Appendix 2 Numerical Data Pertaining to Earth	AP-2
Resources and Reserves	508		/ · · ·
Energy Resources	508	Appendix 3 Important Events That Led to the Theory of Plate Tectonics	AP-3
Oil and Natural Gas	510	Appendix 4 Chemical Reactions	AP-5
Coal	514	Appendix 5 Properties of the Most	
Alternatives to Fossil Fuels	516	Common Minerals of Earth's Crust	AP-6
Conservation	521	Appendix 6 Topographic and	
Energy Policy	521	Geologic Maps	AP-10
Mineral Resources	522	Glossary	GL-1
The Geology of Mineral Deposits	526	Index	I-1