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Introduction

Preface

A sound introduction to probability and statistics theory is required for many
college majors. This text, written for junior and senior level undergraduates and
beginning graduate students, provides that solid instruction. Designed for students
with no previous experience in probability and statistics, this text uses many real-
life examples to show how mathematical topics are related. Theories are introduced
once solid relationships have been established.

This text encourages students to draw on knowledge gained in previous math
classes. Many students entering their junior year have been exposed to a number
of mathematical ideas, but they may have little experience applying these ideas to
new subjects. Therefore, I have endeavored to show connections between material
learned in earlier courses, such as calculus, and how they relate to the topics dis-
cussed here. Many junior level undergraduates need some help applying axioms
and theorems to more complex mathematical ideas. For this reason, I have tried, in
the earlier chapters, to provide some insight into why one would choose to prove
a result in a particular manner. Later chapters offer less support so that students
can develop their own skills.

Juniors and seniors in the mathematical and engineering sciences have the
requisite background needed for this text. This means that for all chapters except
Chapters 13 and 14 the only background assumed is three semesters of calculus. In
Chapters 13 and 14 some rudimentary knowledge of matrix algebra is required. The
first seven chapters provide more than enough material for a one-semester course
in probability theory. Chapters 8 through 12 form the core of a one-semester course
in statistical theory. Additional topics may be added, as desired, from Chapters 13
and 14.
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Preface

Chapter A brief synopsis of each chapter follows.

Synopses

Chapter 1: The idea of random experiments is introduced. This is followed by the
axioms of probability. From there some elementary consequences are discussed.
Set theory and combinatorics are reviewed for later application. Probabilities for
finite sample spaces of equally likely events are covered.

Chapter 2: The basic concepts of conditional probability and independent events
are covered. In addition, Bayes’ Rule is discussed.

Chapter 3: Random variables are defined along with the distribution function.
The differences between discrete and continuous random variables are presented.
Random vectors and the concept of independent random variables are introduced.
Conditional distributions are also covered.

Chapter 4: Expected value is discussed. The expected values of functions of ran-
dom variable, especially moments, are covered. Moment generating functions and
their properties are considered. Conditional expectation is also briefly addressed.

Chapter 5: Coverage of the most commonly encountered discrete and continuous
random variables is provided. The bivariate normal distribution is also considered.

Chapter 6: Standard methods for deriving the distributions of random variables,
which are functions of other random variables, are introduced. The uses of distri-
bution functions, moment generating functions, and Jacobians are discussed. These
provide a basis for deriving the distribution of sample statistics.

Chapter 7: The general concepts of convergence in probability and distribution
are discussed. Chebyshev’s Inequality is introduced as a method for showing
convergence in distribution. The Central Limit Theorem for independent and iden-
tically distributed random variables is given along with additional results for sum,
products, and quotients of sequences of random variables.

Chapter 8: The role of descriptive statistics in data analysis is introduced. The
quantile—quantile plot is emphasized as a method of determining the adequacy of
a statistical model. Simple random sampling is covered.

Chapter 9: The chi-square, ¢ and F distributions are defined. The independence
of X and s* is proven. Order statistics are discussed in a very complete fashion
for a text at this level.

Chapter 10: The point estimation problem is covered. Maximum likelihood and
method of moments estimation are discussed as alternative approaches to esti-
mation. The ideas of unbiasedness, efficiency, sufficiency and completeness are
covered to show how it is possible to derive unbiased estimators having minimum
variance. The large sample properties of estimators, such as consistency and being
best asymptotically normal, are discussed. Robustness is introduced to address
the possibility that the assumed model may differ from the actual one. Bayes
estimators are introduced.
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Chapter 11: The most standard methods for deriving confidence intervals are
covered. One procedure for finding a nonparametric confidence interval for the
median is discussed.

Chapter 12: Hypothesis testing is introduced. Types I and II errors are given as
a method to discern between competing critical regions. Neyman-Pearson tests,
uniformly most powerful tests, and likelihood ratio tests are discussed as methods
to derive “good” tests. Chi-square testing is introduced. Nonparametric tests are
covered to illustrate the case when the underlying distribution is not known.

Chapter 13: Least squares estimators are introduced and their properties analyzed
for a simple regression model with normally distributed error terms. The calculus
of matrices is covered to facilitate the discussion of multiple regression. Here a
basic knowledge of matrix arithmetic is required. Multiple regression is presented
in a matrix algebra setting. Correlation analysis is discussed. One emphasis here
is to highlight the differences between regression and correlation. Nonparametric
methods for simple regression and correlation are also considered.

Chapter 14: The basic concepts of experimental design are introduced. Single-
factor, randomized complete block, and two-factor factorial designs are considered.
The theoretical discussion here introduces the idea of idempotent matrices. A basic
understanding of the rank of a matrix is assumed for this material. Nonparamet-
ric alternatives for the single-factor and randomized complete block cases are
discussed.

An Instructors Manual is available with this text. It provides detailed solutions for
all of the exercises in the text.
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1.1
Introduction

Random Experiments
and Probability

Most people know intuitively what the word “probability” means. Many of us
have encountered probabilities in our daily activities. For example, if we flip a
coin it is our understanding that heads should result about half the time. When a
local weather forecaster states that there is a 40 percent chance for rain tomorrow
we have a general understanding that what is meant is that, given the current
conditions, rain may occur 4 times out of 10. If we play bridge, we may draw on
past experience to assess the likelihood that the cards held by our opponents have
been distributed in a certain way in order to plan how we play a current hand.
In fact, anyone who is consistently successful at games involving chance such
as poker and backgammon is well aware of the relative frequency of the various
possible outcomes in the play of the game.

The situations mentioned above have some things in common. In each we face
a situation that is, at least in principle, well defined and repeatable. The possible
outcomes are known, but the particular outcome that will take place this time
cannot be predicted. What probability attempts to do is to determine a numerical
value that tells what proportion of the time each possibility will occur.

One could correctly argue that the weather example is not like the others. It
does not involve chance occurrences but rather represents a less than complete
understanding of the physics of the atmosphere. This is the case in a number of
areas where probability may be applied. Many physical situations are so compli-
cated that it is not feasible to develop a mathematical model that accounts for all
of the variables. In such cases it is common to develop models that use the main
variables and then lump together the unused variables in a term that represents the
unpredicted part of the model called the “noise.” The noise in the model is what
injects randomness into predictions.
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Random Experiments and Probability

Our goal is to investigate the mathematical structures that can be used to
describe these types of situations, to define precisely what a probability is, and
to study its properties. These concepts can be studied on a number of levels
ranging from an intuitive approach, such as would be appropriate for a person
mainly interested in applications, to a highly abstract approach, where probability
is a corner of an area of real analysis known as measure theory. We aim for a
middle-of-the-road approach—rigorous enough to give some appreciation for the
mathematics involved but grounded enough in real-life applications to show how
probability applies to real-life situations.

The origins of the study of probability theory can be traced to the 17th cen-
tury where it was used to predict games of chance. A professional gambler named
Chevalier de Mere posed the following problem to the French mathematician
Pascal, now referred to as the problem of the points. Two players put up stakes
and play a game of chance with the understanding that the winner takes all the
money. How should the stakes be divided if the game is stopped before either
player has won? In attacking this problem Pascal began and carried on a lengthy
correspondence with another famous French mathematician, Fermat. At about the
same time other famous mathematicians such as Christian Huygens and James
Bernoulli worked on another problem that has become a classic, the gambler’s
ruin problem. In this problem two players, A and B, begin with some coins and
play a game of chance. On each play of the game A wins a coin from B p percent
of the time, and B wins a coin from A 100 — p percent of the time. The game
runs until one player has won all of the coins. What proportion of the games will
be won by A? We shall return to these problems in Chapter 2.

For a long time, probability theory concentrated in the area of games of chance,
mainly because the areas of applications in the natural sciences such as errors of
measurements, genetics, and statistics were not very well developed. Beginning in
the 18th century the natural sciences began to use probabilistic ideas. The more
advanced analytical methods were developed by mathematicians of the time such
as DeMoivre, Laplace, Gauss, and Poisson. In the middle of the 19th century, the
Russian mathematicians Chebyshev, Markov, and Liapunov introduced the random
variable. This concept had an enormous impact on the study of probability.

In the 20th century, probability theory became a topic of study for its own
sake. As we shall see in Section 1.2, the Soviet mathematician Andrei Kolmogorov
developed an axiomatic basis for the subject. In addition, Emil Borel demonstrated
connections between probability and measure theory. This connection has served
as the basis for many recent developments in probability theory.

Today, probability theory is an important component in many areas of study.
For example, the subjects of quantum mechanics and thermodynamics in physics
are based heavily on the idea of random events. Statistics uses probability as its
primary tool for assessing the quality of procedures. The topics of reliability, qual-
ity control, inventory theory, and queuing theory are applications of probability
theory in operations research and industrial engineering. And in medicine, the
subject of epidemiology models the spread of disease using probabilistic ideas.
The application of probability theory to real-life problems is widespread, as will
be demonstrated in this text.
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Set Theory

Definition 1.1

Section 1.2 Set Theory 3

Probability theory is based on the occurrence of events in a random experiment.
Random experiments and events are most conveniently described mathematically
by using sets and set operations. Random experiments will be formally defined
and discussed in detail in Section 1.3. For now all we need to know is that an
experiment is taken to be any activity that is conducted according to a well-defined
set of rules where an observation of the outcome is made.

This section reviews set theories and the ideas that are useful in describing
these sets. You may be familiar with the basic ideas in set theory from other math-
ematics courses. For more complete coverage, consult any discrete mathematics
text. A more rigorous approach to the topic is given in Naive Set Theory by P. R.
Halmos.

An event is a well-defined collection of outcomes of an experiment. The
outcomes that belong to the set are called its elements. The collection of all
possible outcomes of an experiment is called the sample space.

The term “well defined” simply means that if you are given a description of
an event and an outcome it is possible to determine definitely if that outcome is
an element of the event. Events are typically denoted by using capital letters such
as A, B, and so on. The sample space is commonly denoted by S. Outcomes are
denoted by using lowercase letters. If an object x is an outcome in the event A
we would write this fact as

x e A

Similarly, if x is not an outcome in A we would write

X ¢ A.

The exact composition of a given event is usually described in one of two
ways. If the event has relatively few outcomes it is often convenient simply to
describe the event by listing them in braces ({, }) and separating them by commas.
For example, in an experiment where a number is selected from the digits the
sample space S of digits would be described by

s =1{0,1,2,3,4,5,6,7,8,9}.
The event O of observing an odd digit would be described by
o0 ={1,3,5,7,9}.

The order in which elements appear in the list is meaningless. Thus, we could
just as correctly define S by

S ={7.4,2,3,5,8,1,0,9,6}.

In addition, if an outcome is in an event it appears only once in the list of elements.
This means that {1,2,2} is the same as {1,2} for the purpose of defining an event.
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Random Experiments and Probability

The other common way to define an event is to list those properties that
characterize the outcomes in the event. Using this method we would describe §
as follows.

S = {x:xis an integer,0 = x = 9}

This would read as “S is the set of outcomes x such that x is an integer and x is
greater than or equal to 0 and less than or equal to 9.” The colon is translated to
read “such that,” and the comma is read as “and.” It is important to note that

E = {x:x is an integer}

does not define the same sample space. The integer —1 is an element £ but not
of S. Thus, when defining a sample space or an event in this manner it is critical
to give a list of properties that are satisfied by and only by each of the outcomes
of the set.

We next look at the concept of 2 events being equal. The idea is quite intuitive.
We would certainly be inclined to state that the event A = {1,2,3} is the same
as the event {3,1,2}. This notion is made formal by the following definition.

Two events, A and B, are said to be equal if they contain exactly the same
elements.

In formal set theory this is known as the axiom of extension. If the event A
contains the same elements as the event B we should state that “A equals B” and
write

A =B.

Similarly, if one event contains an outcome that is not in the other event then we
would say “A is not equal to B” and write

A #B.

—

Example 1.1

Suppose we select a letter from the English alphabet. Let V = {a,e,i,0,u}. Here
the sample space would be the letters of the English alphabet. We could define

A = {x:xis a letter in the English alphabet, x is a vowel}.
In this case A = V. i

The opposite of the sample space, which contains all of the outcomes of an
experiment, is the empty set. This event contains no outcomes and is denoted by
. An example of an event specification that results in the empty set is

F={x:x<l,x>1}

There are no real numbers that are simultaneously greater than and less than unity.
Thus, the set is empty. It is logical to ask if there can be more than one empty set.
The answer is no due to the axiom of extension. If A is empty and B is empty,
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then there are no elements in A and none in B. Hence there is no element that
is in A that is not in B, which means that they are the same set. This kind of
reasoning may seem a little strange, but arguments involving the empty set are
typically carried out in this manner.

Example 1.2

Definition 1.3

Theorem 1.1

Suppose we select a positive integer. The sample space S would be the positive
integers. Then

A={x:x* =5} ={1,2} while B={x:x*=5}=0.
| |

If two events A and B are not equal, 3 things are possible. One event may
be completely contained in the other such as A = {1,2,3,4} and B = {2,3}. The
2 events have no outcomes in common such as A = {1,2} and B = {3,4}. The
last possibility is that some but not all outcomes are common to both sets such as
A = {1,3} and B = {2,3,4}. When an event is completely contained in another,
then the event that is contained is said to be a subset of the other. In the first
example given above we would say that B is a subset of A and write it as

B c A.

It is common practice when A has outcomes that are not in B to refer to B as
being a proper subset of A and to A as being a superset of B. A formal definition
of subset is given below. If B is a subset of A, but not necessarily a proper subset,
then we would write

B C A.

If, for any x € A, we have x € B then A c B. If A is not a subset of B we
would write
A & B.

All determinations of whether one event is a subset of another proceed in the
same manner. Suppose we wish to determine if A is a subset of B. The method
is to pick a general element from A and show that its belonging to A necessarily
implies that it also belongs to B. Some basic properties of subsets are given by
the following theorem.

Let A, B, and C be any three events from the sample space S. Then the
following are true.

1. dcAcCS

2. AcA

3. fAcBand BcC, then AcC.

4. A =B if and only if A c B and B C A.




