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PREFACE

This book arose from a friendship formed when we were both fac-
ulty members of the Department of Physics, Universidad Autonoma
Metropolitana, Iztapalapa Campus, in Mexico City. Plaschko was
teaching an intermediate to advanced course in mathematical
physics. He had written, with Klaus Brod, a book entitled, “Hoehere
Mathematische Methoden fuer Ingenieure und Physiker”, that
Henderson admired and suggested that be translated into English
and be updated and perhaps expanded somewhat.

However, we both prefer new projects and this suggested instead
that a book on Stochastic Differential Equations be written and this
project was born. This is an important emerging field. From its incep-
tion with Newton, physical science was dominated by the idea of
determinism. Everything was thought to be determined by a set of
second order differential equations, Newton’s equations, from which
everything could be determined, at least in principle, if the initial
conditions were known. To be sure, an actual analytic solution would
not be possible for a complex system since the number of dynamical
equations would be enormous; even so, determinism prevailed. This
idea took hold even to the point that some philosophers began to
speculate that humans had no free will; our lives were determined
entirely by some set of initial conditions. In this view, even before
the authors started to write, the contents of this book were deter-
mined by a set of initial conditions in the distant past. Dogmatic
Marxism endorsed such ideas, although perhaps not so extremely.

Deterministic Newtonian mechanics yielded brilliant successes.
Most astronomical events could be predicted with great accuracy.

vii
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Even in case of a few difficulties, such as the orbit of Mercury, New-
tonian mechanics could be replaced satisfactorily by equally deter-
ministric general relativity. A little more than a century ago, the
case for determinism was challenged. The seemingly random motion
of the Brownian motion of suspended particles was observed as was
the sudden transition of the flow of a fluid past an object or obstacle
from lamanar flow to chaotic turbulence. Recent studies have shown
that some seemingly chaotic motion is not necessarily inconsistent
with determinism (we can call this quasi-chaos). Even so, such prob-
lems are best studied using probablistic notions. Quantum theory
has shown that the motion of particles at the atomic level is funda-
mentally nondeterministic. Heisenberg showed that there were limits
to the precision with which physical properties could be determined.
One can only assign a probablity for the value of a physical quantity.
The consequence of this idea can be manifest even on a macroscopic
scale. The third law of thermodynamics is an example.

Stochastic differential equations, the subject of this monograph,
is an interesting extension of the deterministic differential equations
that can be applied to Brownian motion as well as other problems.
It arose from the work of Einstein and Smoluchowski among others.
Recent years have seen rapid advances due to the development of the
calculii of Ito and Stratonovich.

We were both trained as mathematicians and scientists and our
goal is to present the ideas of stochastic differential equations in
a short monograph in a manner that is useful for scientists and
engineers, rather than mathematicians and without overpowering
mathematical rigor. We presume that the reader has some, but not
extensive, knowledge of probability theory. Chapter 1 provides a
reminder and introduction to and definition of some fundamental
ideas and quantities, including the ideas of Ito and Stratonovich.
Stochastic differential equations and the Fokker—Planck equation are
presented in Chapters 2 and 3. More advanced applications follow in
Chapter 4. The book concludes with a presentation of some numeri-
cal routines for the solution of ordinary stochastic differential equa-
tions. Each chapter contains a set of exercises whose purpose is to aid
the reader in understanding the material. A CD-ROM that provides
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MATHEMATICA and FORTRAN programs to assist the reader with
the exercises, numerical routines and generating figures accompanies
the text.

Douglas Henderson
Peter Plaschko

Provo Utah, USA
Mexico City DF, Mexico
June, 2006



INTRODUCTION

The theory of deterministic chaos has enjoyed during the last three
decades a rapidly increasing audience of mathematicians, physicists,
engineers, biologists, economists, etc. However, this type of “chaos”
can be understood only as quasi-chaos in which all states of a system
can be predicted and reproduced by experiments.

Meanwhile, many experiments in natural sciences have brought
about hard evidence of stochastic effects. The best known example
is perhaps the Brownian motion where pollen submerged in a fluid
experience collisions with the molecules of the fluid and thus exhibit
random motions. Other familiar examples come from fluid or plasma
dynamic turbulence, optics, motions of ions in crystals, filtering the-
ory, the problem of optimal pricing in economics, etc. The study of
stochasticity was initiated in the early years of the 1900’s. Einstein
[1], Smoluchowsky [2] and Langevin [3] wrote pioneering investiga-
tions. This work was later resumed and extended by Ornstein and
Uhlenbeck [4]. But investigation of stochastic effects in natural sci-
ence became more popular only in the last three decades. Meanwhile
studies are undertaken to calculate or at least approximate the effect
of stochastic forces on otherwise deterministic oscillators, to investi-
gate the stability or the transition to stochastic chaos of the latter
oscillator.

To motivate the following considerations of stochastic differential
equations (SDE) we introduce a few examples from natural sciences.

(a) Pendulum with Stochastic Excitations

We study the linearized pendulum motion z(¢) subjected to a
stochastic effect, called white noise

i+ z = B&,

XV
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where (3 is an intensity constant, ¢ is the time and &; stands for
the white noise, with a single frequency and constant spectrum. For
B = 0 we obtain the homogeneous deterministic (non-stochastic) tra-
ditional pendulum motion. We can expect that the stochastic effect
disturbs this motion and destroys the periodicity of the motion in
the phase space (z,4). The latter has closed solutions called limit
cycles. It is an interesting task to investigate whether the solutions
disintegrate into scattered points (stochastic chaos). We will cover
this problem later in Section 2.3 and find that the average motion
(in a sense to be defined in Section 1.2 of Chapter 1) of the pendu-
lum is determined by the deterministic limit (8 = 0) of the stochastic
pendulum equation.

(b) Stochastic Growth of Populations

N(#) is the number of the members of a population at the time ¢, o
is the constant of the deterministic growth and 3 is again a constant
characterizing the intensity of the white noise. Thus we study the
growth problem in terms of the linear scenario

Elg = aN + GN¢&,.
The deterministic limit (3 = 0) of this equation describes the growth
of a population living on an unrestricted area with unrestricted
food supply. Its solution (the number of such a population) grows
exponentially. The stochastic effects, or the white noise describes a
stochastic varying food supply that influences the growth of the pop-
ulation. We will consider this problem in the Section 2.1.1 and find
again that the average of the population is given by the deterministic
limit.
(c) Diffraction of Optical Waves

The transfer function T(w); w = (w1, ws) of a two-dimensional optical
device is defined by

T(w) = /jo dac/ﬁoo dyF(z, y)F*(z — w1,y — w2)/N;

N= / dz / dy[F(z, )P,
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where F is a complex wave amplitude and F* = cc(F) is its complex
conjugate. The parameter N denotes the normalization of |F(z, y)|?
and the variables x and y stand for the coordinates of the image
plane. In a simplified treatment, we assume that the wave form is
given by

F = |F|exp(—ikA); |F|, k = const,

where k and A stand for the wave number and the phase of the
waves, respectively. We suppose that the wave emerging from the
optical instrument (e.g. a lens) exhibits a phase with two different
deviations from a spherical structure A = A, + A; with a controlled
or deterministic phase A.(z,y) and a random phase A,(z,y) that
arises from polishing the optical device or from atmospheric influ-
ences. Thus, we obtain

T(w) = %/oo dz /_oo dy exp{ik[A(z — w1,y —w2) — A(z,9)]},

where K is used to include the normalization. In simple applications
we can model the random phase using white noise with a Gaussian
probability density. To evaluate the average of the transfer function
(T(w)) we need to calculate the quantity

(exp{ik[Ar(z — w1,y —w2) — Ac(z, )]})-

We will study the Gaussian probability density and complete the
task to determine the average written in the last line in Section 1.3
of Chapter 1. An introduction to random effects in optics can be
found in O’Neill [5].

(d) Filtering Problems

Suppose that we have performed experiments of a stochastic problem
such as the one in (a) in an interval ¢ € [0, u] and we obtain as result
say A(v),v = [0,u]. To improve the knowledge about the solution we
repeat the experiments for ¢ € [u, T] and we obtain A(t),t = [u, T].
Yet due to inevitable experimental errors we do not obtain A(¢) but
a result that includes an error A(t) + ‘noise’. The question is now
how can we filter the noise away? A filter is thus, an instrument to
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clean a result and remove the noise that arises during the observa-
tion. A typical problem is where a signal with unknown frequency
is transmitted (e.g. by an electronic device) and it suffers during
the transmission the addition of a noise. If the transmitted signal
is stochastic itself (as in the case of music) we need to develop a
non-deterministic model for the signal with the aid of a stochastic
differential equation. To study basic the ideas of filtering problems
the reader in referred to the book of Stremler [6].

(e) Fluidmechanical Turbulence

This is the perhaps most challenging and most intricate application
of statistical science. We consider here the continuum dynamics of a
flow field influenced by stochastic effects. The latter arise from initial
conditions (e.g. at the nozzle of a jet flow, or at the entry region of a
channel flow) and/or from background noise (e.g. acoustic waves). In
the simplest case, the incompressible two-dimensional flows, there are
three characteristic variables (two velocity components and the pres-
sure). These variables are governed by the Navier—Stokes equations
(NSEs). The latter are a set of three nonlinear partial differential
equations that included a parameter, the Reynolds number R. The
inverse of R is the coefficient of the highest derivatives of the NSEs.
Since turbulence occurs at intermediate to high values of the R, this
phenomenon is the rule and not the exception in Fluid Dynamics and
it occurs in parameter regions where the NSEs are singular. Nonlin-
ear SDEs — such as the NSEs — lead additionally to the problem
of the closure, where the equation governing the statistical moment
of nth order contains moments of the (n + 1)th order.

Hopf [7] was the first to try to find a theoretical approach to
solve the problem for the idealized case of isotropic homogenous tur-
bulence, a flow configuration that can be approximately realized in
grid flows. Hopf assumed that the turbulence is Gaussian, an assump-
tion that facilitates the calculation of higher statistical moments of
the distribution (see Section 1.3 in Chapter 1). However, later mea-
surements showed that the assumption of a Gaussian distribution
was rather unrealistic. Kraichnan [8] studied the problem again in
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the 60’s and 70’s with the direct triad interaction theory in the ide-
alized configuration of homogeneous isotropic turbulence. However,
this rather involved analysis could only be applied to calculate the
spectrum of very small eddies where the viscosity dominates the flow.
Somewhat more progress has been achieved by the investigation of
Rudenko and Chirin [9]. The latter predicted with aid of stochas-
tic initial conditions with random phases a broad banded spectra
of a nonlinear model equation. During the last two decades there
was the intensive work done to investigate the Burgers equation and
this research is summarized in part by Wojczinsky [10]. The Burgers
equation is supposed to be a reasonable one-dimensional model of
the NSEs. We will give a short account on the work done in [9] in
Chapter 4.
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DF
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i(z)
EX
FPE
I'(x)
GD
GPD
HPP
Hy ()
IC
IID

GLOSSARY

almost certainly
boundary condition

differential of the Brownian motion
(or equivalently Wiener process)

complex conjugate of a
dimension or dimensional
distribution function

degrees of freedom

Kronecker delta function

Dirac delta function

exercise at the end of a chapter
Fokker—Planck equation
gamma function

Gaussian distribution

Gaussian probability distribution
homogeneous Poisson process
Hermite polynomial of order n
initial condition

identically independently distributed

xxi
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IFF if and only if

IMSL international mathematical science library
L Laplace transform

M master, as in master equation

MCM  Monte Carlo method

NSE Navier—Stokes equation

NIGD  normal inverted GD

N(p,0) normal distribution with ;2 as mean and ¢ as variance
o Stratonovich theory

ODE ordinary differential equation

PD probability distribution

PDE partial differential equation

PDF probability distribution function

PSDE  partial SDE

r Reynolds number

RE random experiment

RN random number

RV random variable

Re(a)  real part of a complex number

R, C sets of real and complex numbers, respectively
S Prandt number

SF stochastic function

SI stochastic integral

SDE stochastic differential equation

SLNN  strong law of large numbers



TPT
WP
WS
WKB
WRT
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SAL
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transition probability per unit time
Wiener process

Wiener sheet

Wentzel, Kramers, Brillouin

with respect to

Wiener white (single frequency) noise
average of a stochastic variable a
variance

conditional averages

minimum of s and ¢

for all values of

element of

short hand for [*_ f(z)dz

end of an example

end of definition

end of theorem
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