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* l Preface

The present work is designed to provide a practical introduction to
aqueous equilibrium phenomena for both students and research
workers in chemistry, biochemistry, geochemistry, and interdisciplin-
ary environmental fields. The pedagogical strategy I have adopted
makes heavy use of detailed examples of problem solving from real
cases arising both in laboratory research and in the study of systems
occurring in nature. The procedure starts with mathematically
complete equations that will provide valid solutions of equilibrium -
problems, instead of the traditional approach through approximate
concentrations and idealized, infinite-dilution assumptions. There is
repeated emphasis on the use of corrected, conditional equilibrium
constants and on the checking of numerical results by substitution in
complete equations and/or against graphs of species distributions..
Graphical methods of calculation and display are used extensively
because of their value in clarifying equilibria and in leading one
quickly to valid numerical approximations. g

The coverage of solution equilibrium phenomena is not, however,
exhaustively comprehensive. Rather, I have chosen to offer funda-
mental and rigorous examinations of homogeneous step-equilibria
and their interactions with solubility and redox equilibria. Many
examples are worked out in detail to demonstrate the use of equi-
librium calculations and diagrams in various fields of investigation.
Over 100 other exercises are included, most with answers and hints for
solution. I have tried to bridge the gap between the oversimplified
treatment in general and analytical chemistry texts and the complexi-
ties of the advanced presentations of multiple competing equilibria
in real systems found in the books by Butler, Garrels and Christ,

v



vi Preface

and Stumm and Morgan (see the Bibliography, Appendix A-6).
Students and workers in modern biology and geology as well as
in chemistry need more help than these works offer in using equi-
librium calculations to deal correctly with important aqueous
systems. In this emphasis, this book differs from other works in
that they are directed more toward chemical analysis, often giving
scant coverage to the earth and biosciences and to apphcatlons to
nonideal solutions.

The present book differs also in its inclusion of varied pH dia-
grams, graphical solution methods, details of Gran plots, and the
construction of E-pH diagrams. Descriptions of Gran (linear titration)
plots in the literature often do not make clear their limiiations in
precisely those cases in which we want most to use them: extremes
at which the approximate equations used to derive the linear functions
do not apply. Finally, it is my hope that the gradual introduction of
the complexities affecting solubility found in Chapter 10 will prove
helpful in dealing with this difficult topic.

Throughout, I have attempted to adhere closely to standard
IUPAC symbolism, as exemplified in the volumes of Stability
Constants (see the Bibliography, Appendix A-6). The chief exception
is in the use of acidity constants rather than the proton formation
constants of anions; I do this because it seems still to be predominant
usage, though I hope this will change.

I'realize that many who are familiar with equilibrium calculations
will find the complete equations, the log ratio, loga, log C, and 7
diagrammatic methods new and strange. Nonetheless, I hope that
they will persist in looking through this study, to discover how great
are the gains in clarity and assurance when using these methods in
preference to the guesswork of more traditional approaches.

The preparation of the large number of «, log «, and i diagrams
was facilitated by-use of an X-Y plotter and a computer program
compiled by Dr. C. C. Ross, Jr., Mathematics Department, Director
of Academic Computing, University of the South (see Appendices
A-2-A-4). It seemed best not to retouch the small discontinuities,
which arise from tolerances in the computation program and plotter
in these plots.

I record my gratitude for the encouragement of many
colleagues and for the inspiration of the writers of the books listed
in the Bibliography, Appendix A-6. I thank the University of the
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South for according to me a sabbatical in 1974-75 for the completion
of the book.

William B. Guenther

Sewanee, Tennessee
August 1975
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1 Electronic Structure
in Aqueous Acid—Base
Chemistry

1. The Protdn in Compounds

Modern theory supports the view that chemical change in matter is
the process of rearrangement of negative electron clouds and positive
atomic kernels to form a more stable mutual relation. The lightest
element, hydrogen, is unique. All others retain a core of inner electrons
throughout their reactions. But the core of hydrogen is only a proton.
It is about 10~ > the diameter of the lithium ion Li*. Thus, the special
ion H* has exceptionally high positive charge density, the charge per
unit volume. It associates with electron clouds in any matter available.
Other ions, like the Li*, can exist as entities in some crystal lattices,
while no substances contain H* as a separate entity or ion unit. It is
important to be clear from the start about the vastly different species
formed by hydrogen (Figure 1-1). When we speak of hydrogen ion
and hydrogen compounds, we shall almost always mean the proton
contained in an electron pair cloud as shown in the H;O* scheme in
Figure 1-1. For a full discussion of evidence and the unique features
of proton chemistry see Chapter 5 in the book by Bockris and Reddy.!

In water, compounds having acidic protons (Brensted acids)
form hydronium H;O™ and higher hydrates, in which the proton is
embedded in an unshared electron cloud on a water oxygen. Under

!J. O. Bockris and A. K. N. REDDY, Modern Electrochemistry, Plenum Press, New
York, 1970, Vol. 1, Chapter 5, “Protons in Solution.” .

1



2 Chapter 1

O > - (@3
H” H Hp H* H0*
a . b ¢ d e
Figure 1-1. Drawings to scale of the forms of hydrogen. (a) The hydride ion,
a proton with two electrons. (b) The hydrogen atom, a proton with one electron.
(c) The hydrogen molecule, two separated protons in a cloud of two electrons.

(d) The hydrogen core, or H* ion, a proton. (¢) The hydronium ion, oxygen
with four electron cloud pairs, three of which are protonated in H;O*.

common conditions only the first row elements from B to F, and a
few others like S, can hold protons in water. In addition, the three
smallest, N, O, and F, exhibit the phenomenon of “hydrogen bonding,”
which accounts for the unusual properties of water and many com-
pounds of these elements.

The normal covalent bond, not the hydrogen bond, between
other atoms and hydrogen differs from all other bonds in that the
proton merges almost completely with a cloud on the other atom.
This makes our traditional bond formulas of these compounds mis-
leading. Let us compare HF and LiF in several formulations: Lewis
dot structures (Figure 1-2a), electron pair cloud (tangent sphere)
models (Figure 1-2b), and contour plots of electron cloud densities
calculated with molecular orbital theory (Figure 1-2c). The orbital
spheres in Figure 1-2b agree with the densities in Figure 1-2c far
better than does the dot picture, Figure 1-2a. Ball-and-stick models
are also seriously misleading with the hydrogen compounds.

The ability of protons to migrate from cloud to cloud among the
" highly electronegative atoms is a major feature of acid—base chemistry.
In water solution, a Brensted acid, like HF, may donate protons to
water molecules. A Lewis acid, like Al(H,0)**, can be seen to act
like the Bronsted acids. The actual Lewis acid A** withdraws
electron cloud from the attached water molecules and also repels the
H*, which then jumps to neighboring water molecules. Either action
increases the concentration of H;O* and decreases the concentration



Electronic Structure in Aqueous Acid-Bases ) ’ 3

a HZ!;':Z Lj F

H 2

Figure 1-2. (a) Lewis dot structures for LiF and HF. (b) Electron pair cloud (tangent sphere)
models of LiF and HF. [See H. A. Bent, J. Chem. Ed. 40, 446 523 (1963).] (c) Contours of electron
charge density calculated for LiF and HF. Inner contour is for 0.2 and the outer is for 0.002
atomic unit (6.7 ¢/A>). This shows the ionic nature of LiF, while the nuclei of HF are both within
the same inner cloud. [See R. F. Bader, W. H. Henneker, and P. E. Cade, J. Chem. Phys. 47,
3381 (1967); 49, 1653 (1968); and A. C. Wahl, “Chemistry by Computer,” Sci. Am. 1970 (April).]

~ of OH™. The donor-acceptor nature of the solvent is central to our
view of acid-base chemistry in water solutions. :
_Acid-base concepts share some features with seemingly different
types of interactions: complexing, precipitation, and even redox.
Comparison of these through theories of Brensted, Lewis, Usanovich,
and Lux-Flood extends our use of the electronic interpretations of



Figure 1-3. Electron pair cloud models of binary
hydrogen compounds arranged according to the position
of the kernel element in the periodic table. The inner
sphere is the kernel with its net positive charge shown.
The other spheres are the tetrahedral (sp®) clouds of
spin-paired electrons. The dots represent the protons
embedded within electron clouds. These protons are
actually too small to put to scale. Features to note:
(1) The protons move farther from the nucleus as the
kernel charge increases. The molecule becomes more
acidic toward water. (2) The cloud size (from covalent
-radii) becomes smaller as the kernel charge increases,
and larger as distance from the nucleus increases while
kernel charge is held constant from HF to HI. (3) Two
factors affect acidity, kernel charge, from CH, to HF,
and cloud size, from HF to HI. The compact cloud of
HF can bind the proton better than the diffuse cloud
of HL.

Chapter 1

HBr

HI

chemistry. Huheey surveys these theories.? Introductory surveys of

structural and theoretical principles are available.>*

Figure 1-3 shows the competing effects of nuclea. repulsion and
electron cloud attraction for a proton in binary hydrogen compounds.

2J. E. HUHEEY, Inorganic Chemistry, Harper and Row, New York, 1972, Chapter 6.
3G. M. BARROW, General Chemistry, Wadsworth Publishing Co., Belmont, California,

1972, Chapters 7 and 11, “Structure” and “Equilibria.”

“HEeNRY A. BENT, The Second Law, Oxford University Press, New York, 1965, Chapter

32, “Thermodynamics of Acid-Base Reactions.”
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2. The Oxy-Acid—Bases

The same arguments concerning size and charge effects in the
binary hydrogen compounds of Figure 1-3 apply to the major class of
acid-bases, the oxy-acid—bases. In these, a protonated oxygen is
attached to other atoms, usually electron-withdrawing atoms or
groups. The more withdrawing, the more acidic the proton, the more
favorable is its transfer to the oxygen cloud on a water molecule, for
example, compare sulfate(IV) and sulfate(VI) acids:

'_?'
H—0—S — O| H—O0—S — O]
lé—H 1§—H
weak acid strong acid

H,SO, has one more coordinated oxide than H,SO;. This withdraws
more electron cioud from the S, and through it, from the OH groups.
Another way to approach this is to note that the oxidation state of S
is six in H,SO,, so that the more exposed positive kernel of the S
withdraws cloud more strongly from OH groups than does S(IV).
Similar reasoning can be applied to other series, for example :

Acid HOCI HOCIO HOCIO, HOCIO,
pK, 15 20 strong strong

Carboxylic acids have the withdrawing coordinated oxide also;
Rivy = o]
|0—H
The pK, is 4-5 when R is aliphatic. But if other withdrawing groups

are added in R, acidity increases:

Acid acetic chloroacetic dichloroacetic trichloroacetic
pK, 4.76 2.86 13 0.7

Thus we see that for most acids in water, the proton shifts between
electron clouds on oxygen in water and in other molecules with
slightly different environments.



