


Micro- and Nanoscale Fluid Mechanics

TRANSPORT IN MICROFLUIDIC DEVICES

Brian J. Kirby

Cornell University

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press

32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org

Information on this title: www.cambridge.org/9780521119030

© 2010 Brian J. Kirby

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Kirby, Brian (Brian J.)

Micro- and nanoscale fluid mechanics: transport in microfluidic devices / Brian Kirby.

Includes bibliographical references and index.

ISBN 978-0-521-11903-0 (hardback)

1. Microfluidic devices. 2. Microfluidics. 3. Nanofluids. I. Title.

TJ853.4.M53K57 2010

620.1'064-dc22 2009053537

ISBN 978-0-521-11903-0 Hardback

Additional resources for this publication at www.cambridge.org/kirby

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

MICRO- AND NANOSCALE FLUID MECHANICS: TRANSPORT IN MICROFLUIDIC DEVICES

This text describes the physics of fluid transport in microfabricated and nanofabricated liquidphase systems, with consideration of particles and macromolecules. This text brings together fluid mechanics, electrodynamics, and interface science with a focused goal of preparing the modern microfluidics researcher to analyze and model continuum fluid mechanical systems encountered when working with micro- and nanofabricated devices. This text is designed for classroom instruction and also serves as a useful reference for practicing researchers. Worked sample problems are inserted throughout to assist the student, and exercises are included at the end of each chapter to facilitate use in classes.

Brian J. Kirby currently directs the Micro/Nanofluidics Laboratory in the Sibley School of Mechanical and Aerospace Engineering at Cornell University. He joined the school in August 2004. Previously, he was a Senior Member of the Technical Staff in the Microfluidics Department at Sandia National Laboratories in Livermore, California. He was educated at Stanford University and The University of Michigan. Professor Kirby has received numerous research and teaching awards, including the Presidential Early Career Award for Scientists and Engineers (PECASE) and the Mr. and Mrs. Robert F. Tucker Excellence in Teaching Award.

Preface

This text focuses on the physics of liquid transport in micro- and nanofabricated systems. It evolved from a graduate course I have taught at Cornell University since 2005, titled "Physics of Micro- and Nanoscale Fluid Mechanics," housed primarily in the Mechanical and Aerospace Engineering Department but attracting students from Physics, Applied Physics, Chemical Engineering, Materials Science, and Biological Engineering. This text was designed with the goal of bringing together several areas that are often taught separately – namely, fluid mechanics, electrodynamics, and interfacial chemistry and electrochemistry – with a focused goal of preparing the modern microfluidics researcher to analyze and model continuum fluid-mechanical systems encountered when working with micro- and nanofabricated devices. It omits many standard topics found in other texts – turbulent and transitional flows, rheology, transport in gel phase, Van der Waals forces, electrode kinetics, colloid stability, and electrode potentials are just a few of countless examples of fascinating and useful topics that are found in other texts, but are omitted here as they are not central to the fluid flows I wish to discuss.

Although I hope that this text may also serve as a useful reference for practicing researchers, it has been designed primarily for classroom instruction. It is thus occasionally repetitive and discursive (where others might state results succinctly and only once) when this is deemed useful for instruction. Worked sample problems are inserted throughout to assist the student, and exercises are included at the end of each chapter to facilitate use in classes. Solutions for qualified instructors are available from the publisher at http://www.cambridge.org/kirby. This text is *not* a summary of current research in the field and omits any discussion of microfabrication techniques or any attempt to summarize the technological state of the art.

The text considers, in turn, (a) low-Reynolds-number fluid mechanics and hydraulic circuits; (b) outer solutions for microscale flow, focusing primarily on the unique aspects of electroosmotic flow outside the electrical double layer; (c) inner solutions for microscale flow, focusing on sources of interfacial charge and modeling of electrical double layers; and (d) unsteady and nonequilibrium solutions, focusing on nonlinear electrokinetics, dynamics of electrical double layers, electrowetting, and related phenomena. In each case, several applications are selected to motivate the presentation, including microfluidic mixing, DNA and protein separations, microscale fluid velocity measurements, dielectrophoretic particle manipulation, electrokinetic pumps, and the like.

I select notation with the goal of helping students new to the field and with the understanding that this (on occasion) leads to redundant or unwieldy results. I minimize use of one symbol for multiple different variables, so the radius in spherical coordinates (r) is typeset with a symbol different from the radius in cylindrical coordinates (*) and the colatitudinal angle ϑ in spherical coordinates is distinguished from the polar coordinate in cylindrical coordinates (ϑ) . Because I teach from this text using a chalkboard, I use symbols that I can reproduce on a chalkboard – thus I avoid the use of the Greek

letter ν for the kinematic viscosity $\nu = \eta/\rho$, because I am utterly unable to make it distinguishable from the y velocity ν . Vectors, though they are placed in boldface to make them stand out, are also written with (admittedly redundant) superscripted arrows to match the chalkboard presentation.

This material is used for a semester-long graduate course at Cornell. Chapters 1, 2, 5, 7, and 8, as well as the appendices, are not covered in class as they are considered review or supplementary material. The remainder of the text is covered in approximately forty-two 50-minute classroom sessions.

I would like to acknowledge a number of people who helped with various aspects of this text. In particular, Dr. Elizabeth Strychalski and Professors Stephen Pope and Claude Cohen at Cornell, Professor Shelley Anna of Carnegie-Mellon University, Professor Kevin Dorfman of the University of Minnesota, Professor Nicolas Green of the University of Southampton, Donald Aubrecht of Harvard University, Professor Sumita Pennathur of UCSB, and Professor Aaron Wheeler of the University of Toronto were kind enough to offer useful suggestions. Professor Amy Herr of the University of California, Berkeley, used a draft of this text for her class during spring 2009; her insight and the feedback from her students were both immensely helpful. Professor Martin Bazant of the Massachusetts Institute of Technology provided materials helpful in completing the bibliography for several of the chapters. The students that have taken my class since 2004 have all contributed to this text in some way, but I would like to thank my student researchers Alex Barbati, Ben Hawkins, Sowmya Kondapalli, and Vishal Tandon in particular for their input, and my student Michael Allen for careful proofreading. Ben Hawkins and Dr. Jason Gleghorn contributed a number of the figures and helped to write material that was included in the chapters on Stokes flow and dielectrophoresis. David J. Griffiths (Reed College) provided files that assisted with typesetting. Gabe Terrizzi created many of the figures; his contributions were immensely helpful. Greg Parker (gparker@chorus.net) designed the cover.

Although many people assisted with review of this text, I am solely responsible for any errors, and I hope that readers will notify me or the publisher of those that they find. Errata will be maintained at http://www.cambridge.org/kirby.

Brian J. Kirby Ithaca, NY May 2010

Nomenclature

Symbol	Meaning	Page of first use or definition
A	area	61
A	Helmholtz free energy	324
χ	coefficient	112
α	phase lag angle	69
α	rotation angle	158
α	thermal diffusivity	80
a	acceleration	255
a	particle radius	171
a_i	activity	413
β	compressibility	75
β	coefficient	236
b	slip length	31
$m{ar{B}}$	applied magnetic field	391
\mathcal{B}	Brillouin function	104
c_i	species molar concentration	407
c_p	specific heat	80
c .	passive scalar	80
C	capacitance	117
C	constant of integration	43
$C_{\rm h}$	compliance	66
\mathcal{C}	complex number	465
$\widetilde{C}_{\mathrm{D}}$	drag coefficient	188
Γ	2D vortex strength	163
Γ	circulation	13
Γ	surface chemical site density	229
Γ	magnitude of injected sample	90
γ	surface tension	20
γ_i	natural logarithm of species concentration	259
X	electrokinetic coupling matrix	65
Xe	electric susceptibility	100
Χm	magnetic susceptibility	98
d	depth	140
d	diameter	22
D	scalar diffusivity	80
D_i	species diffusivity	252
\vec{D}	electric displacement	100

Meaning	Page of first use or definition
	263
	458
•	16 426
	188
	201
	475
	476
	227
-	97
	98
	113 360
	100
	101
	115 115
	477
	10
	413 99
	108
	6 393
	480
	217 482
	482
	480
	288
	287
	97
	133
	133
	153
5. 6	158
	419
	189
	139
	20
	117
	262
	6
	227
electrochemical potential	227
	Dukhin number Dirac delta function identity tensor del operator eccentricity fundamental charge singlet potential pair potential potential of mean force electric field electrical permittivity complex electrical permittivity for sinusoidal fields Stern layer permittivity electrical permittivity, i.e., dielectric constant reactive permittivity dissipative permittivity dissipative permittivity potential well depth strain rate tensor dielectric increment Faraday constant force force per unit volume Clausius—Mossotti factor adjusted distribution function distribution function distribution function Mayer f function Henry's function Henry's function electrophoretic correction factor electric potential electric potential electric potential complex velocity potential azimuthal coordinate cross-correlation zeta potential Gibbs free energy electrical conductance excess surface conductance gravitational acceleration chemical potential

Symbol	Meaning	Page of first use or definition
$oldsymbol{\ddot{G}}_0$	hydrodynamic interaction tensor	187
$m{ar{G}}_0$	Oseen–Burgers tensor	187
H	capillary height	23
Ħ	induced magnetic field	98
h	height	43
n	dynamic viscosity	17
n i	current density	110
0	exchange current density	112
Ĭ	current	64
I	second moment of area	309
I_c	ionic strength	408
	square root of minus 1	157
j j	scalar flux density	80
g	Joukowski transform	171
k	spring constant	325
k	chemical reaction rate	409
k _{ve}	viscoelectric coefficient	235
k_{B}	Boltzmann constant	104
K _a	acid dissociation constant	409
$K_{\rm eq}$	equilibrium constant	409
$K_{\rm sp}$	solubility product	412
c sp	2D doublet strength	165
C	Debye screening parameter	288
Λ	molar conductivity	256
Λ	2D source strength	160
\ _B	Bjerrum length	478
ν _D	Debye length	202
\ _{HS}	hard-sphere packing length	213
\s	Stern layer thickness	360
c	polymer contour length	301
e e	polymer end-to-end length	303
e K	polymer Kuhn length	312
2 _p	polymer persistence length	299
L L	length	61
L	electrical inductance	117
L	depolarization factor	384
n	mass	184
M	magnetization	98
u	viscous mobility	252
$u_{ m DEP}$	dielectrophoretic mobility	374
u _{EK}	electrokinetic mobility	265
$u_{\rm EO}$	electroosmotic mobility	138
$u_{ ext{EP}}$	electrophoretic mobility	252
	magnetic permeability	98
$u_{ m mag}$	magnetic permeability of free space	98
$\mu_{ ext{mag},0} \ N_{ ext{A}}$	Avogadro's number	112

Symbol	Meaning	Page of first use or definition
$N_{\rm bp}$	number of base pairs in DNA molecule	301
n	normal coordinate	106
p	pressure	6
\vec{p}	dipole moment	104
pK_a	negative logarithm of acid dissociation constant	410
pН	negative logarithm of molar proton concentration	410
pOH	negative logarithm of molar hydroxyl ion concentration	411
D7C	point of zero charge	230
pzc P	perimeter perimeter	63
\mathcal{P}	probability density function	313
Pe	mass transfer Peclet number	79
	dummy frequency integration variable	115
ω	stream function	8
ψ	Stokes stream function	9
ψs	electric stream function	469
$oldsymbol{ec{P}}^{\mathrm{e}}$		100
\vec{P}	electric polarization	
	pressure interaction tensor	187
Q	volumetric flow rate	60
$q_{_{_{_{^{^{\prime\prime}}}}}}$	electric charge	97
q''	electric areal charge density	359
ρ	fluid density	6
$\rho_{\rm E}$	net charge density	99
r	radial coordinate – spherical coordinates	418
$r_{ m h}$	hydraulic radius	63
Δr	radial distance – spherical coordinates	98
$\vec{\Delta r}$	distance vector	98
r	radial coordinate – cylindrical coordinates	418
Δr	radial distance – cylindrical coordinates	157
Re	Reynolds number	442
R	universal gas constant	112
R	electrical resistance	117
R	radius of channel	47
R	radius of curvature	21
R	separation resolution	267
$R_{\rm h}$	hydraulic resistance	61
$\langle r_{\rm g} \rangle$	radius of gyration	303
S	arc length	302
S	entropy	324
S	Schwarz-Christoffel transform	473
σ	conductivity	110
σ_{LJ}	Lennard-Jones "bond length"	477
\mathfrak{C}	complex electrical conductivity	114
$\sigma_{\!\scriptscriptstyle S}$	effective surface conductivity	210

Symbol	Meaning	Page of first use or definition
Sk	Stokes number	186
St	Strouhal number	442
t	time	7
T	Kelvin temperature	20
<i>T</i> T T T T T T T T	torque	109
$ar{ar{T}}$	Maxwell stress tensor	107
Ť	stress tensor	15
T.	characteristic time	103
θ	polar coordinate - cylindrical coordinates	418
θ	contact angle	21
θ_0	corner angle	170
θ	colatitude coordinate - spherical coordinates	418
$\Delta \theta$	polar coordinate of distance vector	157
ū	velocity vector	7
щ	complex velocity	159
$u_{\rm EK}$	electrokinetic velocity	269
$u_{\rm EO}$	electroosmotic velocity	140
$u_{\rm EP}$	electrophoretic velocity	255
u_{x}	radial velocity - cylindrical coordinates	8
u_r	radial velocity - spherical coordinates	9
u_{θ}	circumferential velocity - cylindrical coordinates	8
u_{ϑ}	circumferential velocity - spherical coordinates	9
u	molecular internal energy	324
V	voltage	106
ν	volume	66
ω	angular frequency	49
	vorticity	12
<u> </u>	rotation rate tensor	11
w	width	90
x	x coordinate	418
ξ	hard-sphere packing parameter	215
ξ	thermodynamic efficiency	143
y	y coordinate	418
Y	Young's modulus	309
z	z coordinate	418
z	valence magnitude for symmetric electrolytes	203
z_i	species valence	99
Z	partition function	326
$Z_{ m b}$	impedance	119
$Z_{\rm h}$	hydraulic impedance	69

Subscript	Example	Meaning
0	p_0	phasor or sinusoid magnitude
0	w_0	value at reference state
∞	$c_{i,\infty}$	value in freestream or in bulk
bend	$u_{ m bend}$	bending
conv	$oldsymbol{j}_{\mathrm{conv},i}$	convective
diff	$oldsymbol{ar{j}}_{ ext{diff},i}$	diffusive
edl	$q_{ m edl}''$	electrical double layer
eff	ζeff	effective
ext	$m{ar{E}}_{ ext{ext}}$	extrinsic
H	u_H	high
L	u_L	low
m	$\mathfrak{E}_{\mathrm{m}}$	suspending medium
n	E_n	normal
p	ρ_p	particle
pre	$oldsymbol{ar{ au}}_{ ext{pre}}^{ ext{p}}$	isotropic (pressure) components
str	$I_{ m str}$	streaming
t	u_{t}	tangential
visc	$\vec{\bar{\tau}}_{ m visc}$	deviatoric (viscous) components
w	ρ_{w}	water

Superscript, accent	Example(s)	Meaning
0	g_i°	value at reference condition
<i>t</i>	φ', y'	dummy integration variable
,	F', I'	per unit length
"	F'', q''	per unit area
′, ″	f', f''	derivatives of functions
7	$oldsymbol{arepsilon}'$	reactive component
"	ϵ''	dissipative component
_	\overline{u}	spatially averaged
~	Z	analytic representation of real parameters
-	Z \vec{u} , \vec{T} $\vec{\bar{\tau}}$, $\vec{\bar{\bar{\epsilon}}}$	vector or pseudovector
=	$\vec{\bar{\tau}}, \vec{\bar{\epsilon}}$	rank 2 tensor
^	$\hat{x}, \hat{\vartheta}$	unit vector
•	\hat{e}_1	molar value
*	d^*, p^*	nondimensionalized quantity
⟨⟩	$\langle \ell_{ m e} angle, \langle r_{ m g} angle$	time- or ensemble-averaged property
Δ	$\Delta p, \Delta x$	difference in property

Contents

	Prefa Nome	eface pag omenclature			
	Introduction				
ı	Kinematics, Conservation Equations, and Boundary Conditions for				
	Incon	npressil	ble Flow	6	
	1.1	Fluid s	statics	6	
	1.2	Kinem	natics of a fluid velocity field	7	
		1.2.1	Important geometric definitions	7	
		1.2.2	Strain rate and rotation rate tensors	10	
	1.3	Gover	ning equations for incompressible flow	13	
		1.3.1	Conservation of mass: continuity equation	13	
		1.3.2	Conservation of momentum: the Navier-Stokes equations	14	
	1.4	Consti	tutive relations	17	
		1.4.1	Relation between strain rate and stress	17	
		1.4.2	Non-Newtonian fluids	19	
	1.5	Surfac	e tension	20	
		1.5.1	Definition of surface tension and interfacial energy	20	
		1.5.2	Young-Laplace equation	20	
		1.5.3	Contact angle	21	
		1.5.4	Capillary height	22	
		1.5.5	Dynamic contact angle	24	
	1.6	Veloci	ity and stress boundary conditions at interfaces	24	
		1.6.1		24	
		1.6.2	Dynamic boundary condition for continuity of tangential velocity	25	
		1.6.3	Dynamic boundary conditions for stresses	26	
		1.6.4	The physics of the tangential velocity boundary condition	30	
	1.7		g the governing equations	32	
	1.8	Flow r	regimes	33	
	1.9	A wor	d on terminology and the microfluidics literature	33	
	1.10		•	34	
	1.11		ementary reading	36	
	1.12	Exerc	ises	36	
2	Unid		al Flow	41	
	2.1	Steady	y pressure- and boundary-driven flow through long channels	41	
		2.1.1	Couette flow	41	
		2.1.2	Poiseuille flow	46	

	2.2	Startup	and development of unidirectional flows	49
	2.3	Summa	ary	50
	2.4	Supple	mentary reading	51
	2.5	Exercis	ses	51
3	Hydr	aulic Cir	cuit Analysis	60
	3.1	Hydrau	ulic circuit analysis	60
	3.2	Hydrai	ulic circuit equivalents for fluid flow in microchannels	62
		3.2.1	Analytic representation of sinusoidal pressures and flow rates	68
		3.2.2	Hydraulic impedance	69
		3.2.3	Hydraulic circuit relations	70
		3.2.4	Series and parallel component rules	70
	3.3	Solutio	on techniques	72
	3.4	Summa	ary	74
	3.5	Supple	mentary reading	75
	3.6	Exercis	ses	75
4	Pass	ive Scal	ar Transport: Dispersion, Patterning, and Mixing	79
	4.1	Passive	e scalar transport equation	80
		4.1.1	Scalar fluxes and constitutive properties	80
		4.1.2	Scalar conservation equation	80
	4.2	Physics	s of mixing	82
	4.3	Measu	ring and quantifying mixing and related parameters	84
	4.4	The lo	w-Reynolds-number, high-Peclet-number limit	87
		4.4.1	The high-Peclet-number limit	87
		4.4.2	The low-Reynolds-number limit	87
	4.5	Lamin	ar flow patterning in microdevices	88
	4.6	Taylor	-Aris dispersion	89
	4.7	Summa	ary	91
	4.8		ementary reading	92
	4.9	Exerci	ses	92
5	Elec	trostatic	s and Electrodynamics	97
	5.1	Electro	ostatics in matter	97
		5.1.1	Electrical potential and electric field	97
		5.1.2	Coulomb's law, Gauss's law for electricity in a material, curl	
			of electric field	98
		5.1.3	Polarization of matter and electric permittivity	100
		5.1.4	Material, frequency, and electric-field dependence of electrical	
			permittivity	102
		5.1.5	Poisson and Laplace equations	104
		5.1.6	Classification of material types	105
		5.1.7	Electrostatic boundary conditions	105
		5.1.8	Solution of electrostatic equations	107
		5.1.9	Maxwell stress tensor	107
			Effects of electrostatic fields on multipoles	108
	5.2		odynamics	109
		5.2.1	Charge conservation equation	110
		5.2.2	Electrodynamic boundary conditions	110
		5.2.3	Field lines at substrate walls	112

	5.3	Analyt	ic representations of electrodynamic quantities: complex	
		permit	tivity and conductivity	112
		5.3.1	Complex description of dielectric loss	115
	5.4	Electri	cal circuits	116
		5.4.1	Components and properties	117
		5.4.2	Electrical impedance	119
		5.4.3	Circuit relations	119
		5.4.4	Series and parallel component rules	120
	5.5		alent circuits for current in electrolyte-filled microchannels	122
		5.5.1	Electrical circuit equivalents of hydraulic components	122
	5.6	Summa	**************************************	126
	5.7		ementary reading	127
	5.8	Exerci	ses	127
6	Elect	roosmo	sis	131
	6.1	Match	ed asymptotics in electroosmotic flow	132
	6.2	Integra	al analysis of Coulomb forces on the EDL	132
	6.3	Solving	g the Navier-Stokes equations for electroosmotic flow	
		in the	thin-EDL limit	135
		6.3.1	Outer solution	136
		6.3.2	Replacing the EDL with an effective slip boundary condition	136
		6.3.3	Replacing the Navier-Stokes equations with the Laplace equation:	
			flow-current similitude	137
		6.3.4	Reconciling the no-slip condition with irrotational flow	138
	6.4	Electro	oosmotic mobility and the electrokinetic potential	138
		6.4.1	Electrokinetic coupling matrix representation of electroosmosis	140
	6.5	Electro	okinetic pumps	140
		6.5.1	A planar electrokinetic pump	140
		6.5.2	Types of electrokinetic pumps	143
	6.6	Summ	ary	145
	6.7	Supple	ementary reading	145
	6.8	Exerci	ses	146
7	Pote	ntial Flu	id Flow	153
	7.1	Appro	each for finding potential flow solutions to the Navier-Stokes equations	153
	7.2		the equation for velocity potential and stream function	154
		7.2.1	Laplace equation for the velocity potential	154
		7.2.2	No-slip condition	156
	7.3	Potent	tial flows with plane symmetry	156
		7.3.1	Complex algebra and its use in plane-symmetric potential flow	157
		7.3.2	Monopolar flow: plane-symmetric (line) source with volume outflow	
			per unit depth Λ	160
		7.3.3	Plane-symmetric vortex with counterclockwise circulation per unit	
			depth Γ	163
		7.3.4	Dipolar flow: plane-symmetric doublet with dipole moment κ	165
		7.3.5	Uniform flow with speed U	168
		7.3.6	Flow around a corner	170
		7.3.7	Flow over a circular cylinder	171
		7.3.8	Conformal mapping	171

	7.4	Potential flow in axisymmetric systems in spherical coordinates	172
	7.5	Summary	173
	7.6	Supplementary reading	173
	7.7	Exercises	174
8	Stoke	es Flow	. 178
	8.1	Stokes flow equation	178
		8.1.1 Different forms of the Stokes flow equations	179
		8.1.2 Analytical versus numerical solutions of the Stokes flow equations	180
	8.2	Bounded Stokes flows	180
		8.2.1 Hele-Shaw flows	181
		8.2.2 Numerical solution of general bounded Stokes flow problems	182
	8.3	Unbounded Stokes flows	182
		8.3.1 Stokes flow over a sphere in an infinite domain	182
		8.3.2 General solution for Stokes flow over a sphere in an infinite domain	187
		8.3.3 Flow over prolate ellipsoids	188
		8.3.4 Stokes flow over particles in finite domains	189
		8.3.5 Stokes flow over multiple particles	189
	8.4	Micro-PIV	189
		8.4.1 Deterministic particle lag	191
		8.4.2 Brownian motion	191
	8.5	Summary	191
	8.6	Supplementary reading	192
	8.7	Exercises	193
9	The D	Diffuse Structure of the Electrical Double Layer	199
	9.1	The Gouy-Chapman EDL	199
		9.1.1 Boltzmann statistics for ideal solutions of ions	200
		9.1.2 Ion distributions and potential: Boltzmann relation	201
		9.1.3 Ion distributions and potential: Poisson–Boltzmann equation	202
		9.1.4 Simplified forms of the nonlinear Poisson–Boltzmann equation	203
		9.1.5 Solutions of the Poisson–Boltzmann equation	204
	9.2	Fluid flow in the Gouy-Chapman EDL	208
	9.3	Convective surface conductivity	210
	9.4	Accuracy of the ideal-solution and Debye-Hückel approximations	211
		9.4.1 Debye–Hückel approximation	212
		9.4.2 Limitations of the ideal solution approximation	213
	9.5	Modified Poisson–Boltzmann equations	213
		9.5.1 Steric correction to ideal solution statistics	213
		9.5.2 Modified Poisson–Boltzmann equation	215
		9.5.3 Importance and limitations of Poisson–Boltzmann modifications	216
	9.6	Stern layer	217
	9.7	Summary	217
	9.8	Supplementary reading	218
	9.9	Exercises	218
0	Zeta	Potential in Microchannels	225
	10.1	Definitions and notation	225
	10.2	Chemical and physical origins of equilibrium interfacial charge	226
		10.2.1 Electrochemical potentials	226

		10.2.2	Potential-determining ions	227
		10.2.3	Nernstian and non-Nernstian surfaces	230
	10.3	Expres	ssions relating the surface charge density, surface potential, and	
			otential	232
			Extended interface models: modifications to φ_0	234
			Fluid inhomogeneity models: relation between φ_0 and ζ	234
			Slip and multiphase interface models: hydrophobic surfaces	236
	10.4	Observ	ved electrokinetic potentials on microfluidic substrates	237
			Electrolyte concentration	237
		10.4.2	pH dependence	238
	10.5		ying the zeta potential	238
			Indifferent electrolyte concentrations	238
			Surface-active agents	239
		10.5.3	Chemical functionalizations	240
	10.6	Chemi	cal and fluid-mechanical techniques for measuring interfacial	
		proper		240
			Charge titration	240
		10.6.2	Electroosmotic flow	241
		10.6.3	Streaming current and potential	242
	10.7	Summ		245
	10.8	Supple	ementary reading	246
	10.9	Exerci		247
11	Snoo	ice and	Charge Transport	250
• •				
	11.1		s of species transport	250
			Species diffusion	250
			Convection	250
		11.1.3	Relating diffusivity and electrophoretic mobility:	2.52
	44.0		the viscous mobility	252
	11.2		rvation of species: Nernst-Planck equations	253
			Species fluxes and constitutive properties	253
	11.0		Nernst–Planck equations	254
	11.3		rvation of charge	256
			Charge conservation equation	256
	11.7		Diffusivity, electrophoretic mobility, and molar conductivity	258
		-	ithmic transform of the Nernst–Planck equations	258
	11.5		fluidic application: scalar-image velocimetry	259
			SIV using caged-dye imaging	259
	11.6		SIV using photobleaching	259
	11.6	Summ	*	259
	11.7	-	ementary reading	261
	11.8	Exerc	ises	261
12	Micro	ochip C	hemical Separations	265
	12.1	Micro	chip separations: experimental realization	265
			Sample injection	266
			Resolution	267
	12.2		and broadening	268
			Analyte transport: quiescent flow, no electric field	268
			Transport of analytes: electroosmotic flow and electrophoresis	269
			, and the second of the second	207