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Introduction

The first volume serves as a general introduction to some of the tech-
niques most commonly used in representation theory. The quiver technique,
the Auslander-Reiten theory and the tilting theory were presented with
some application to finite dimensional algebras over a fixed algebraically
closed field.

In particular, a complete classification of those hereditary algebras that
are representation-finite (that is, admit only finitely many isomorphism
classes of indecomposable modules) is given. The result, known as Gabriel’s
theorem, asserts that a basic connected hereditary algebra A is representa-
tion-finite if and only if the quiver Q4 of A is a Dynkin quiver, that is, the
underlying non-oriented graph @ 4 of Q4 is one of the Dynkin diagrams

A,:e—e— ... — o o (n vertices, n > 1);
D, : o I o . o (nvertices, n > 4);

We also study in Volume 1 the class of hereditary algebras that are
representation-infinite. It is shown in Chapter VIII that if B is a repre-
sentation-infinite hereditary algebra, or B is a tilted algebra of the form

B = End TKQ,

where K () is a representation-infinite hereditary algebra and T} KQ 1s a post-
projective tilting K @Q-module, then B is representation-infinite and the
Auslander-Reiten quiver I'(mod B) of B has the shape

P(A) Q(A)

ix



X INTRODUCTION

where mod B is the category of finite dimensional right B-modules, P(B) is
the unique postprojective component of I'(mod B) containing all the inde-
composable projective B-modules, Q(B) is the unique preinjective compo-
nent of I'(mod B) containing all the indecomposable injective B-modules,
and R(B) is the (non-empty) regular part consisting of the remaining com-
ponents of I'(mod B).

A prominent role in the representation theory is played by the class
of hereditary algebras that are representation-infinite and minimal with
respect to this property. They are just the hereditary algebras of Euclidean
type, that is, the path algebras K@, where @ is a connected acyclic quiver
whose underlying non-oriented graph @ is one of the following Euclidean
diagrams

/.
&,L [ S — --;.; (n+1vertices, n > 1);
D, :
" e I—o— o—I—c; (n+1 vertices, n > 4);
]E() \I
[ ] { ] ® { ] .;
Er : !
 ———0—0—0— 00— 00— 0
Eg :
P———0— 00— 00— 00— 00— 0—0

It is shown in Chapter VII that the underlying graph Q of a finite con-
nected quiver Q = (Qo, Q1) is a Dynkin diagram, or a Euclidean diagram,
if and only if the associated quadratic form gq¢ : ZIQ! — 7 is positive
definite, or positive semidefinite and not positive definite, respectively.

The main aim of Volumes 2 and 3 is to study the representation-infinite
tilted algebras B = EndTx¢ of a Euclidean type () and, in particular, to
give a fairly complete description of their indecomposable modules, their
module categories mod B, and the Auslander-Reiten quivers I'(mod B).

For this purpose, we introduce in Chapter X a special type of components
in the Auslander-Reiten quivers of algebras, namely stable tubes, and study
their behaviour in module categories. In particular, we present a handy
criterion on the existence of a standard self-hereditary stable tube, due to
Ringel [215], and a characterisation of generalised standard stable tubes,
due to Skowronski [246], [247], [254].
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In Chapters XI and XII, we present a detailed description and properties
of the regular part R(B) of the Auslander-Reiten quiver I'(mod B) of any
concealed algebra B of Euclidean type, that is, a tilted algebra

B = End T]\'Q

of a Euclidean type @ defined by a postprojective tilting K Q-module Tk .
In particular, it is shown that:
o the regular part R(B) of the Auslander-Reiten quiver I'(imodB) is a
disjoint union of the Py (K')-family

T° = {T8her, i)

of pairwise orthogonal standard stable tubes 7,7, where Py (K) is the
projective line over K,
o the family T2 separates the postprojective component P(B ) from the
preinjective component Q(B),
e the module category modB is controlled by the Euler quadratic form
qp : Ko(B) — Z of the algebra B.
A crucial role in the investigation is played by the canonical algebras of
Euclidean type, introduced by Ringel [215]. As an application of the devel-
oped theory, we present in Chapter XIII a complete list of indecomposable
regular K Q-modules over any path algebra K@) of a canonically oriented
Euclidean quiver @, and we show how a simple tilting process allows us to
construct the indecomposable regular modules over any path algebra K@
of a Euclidean type Q.

In Chapter XIV, we give the Happel-Vossieck [112] characterisation of
the minimal representation-infinite algebras B having a postprojective com-
ponent in the Auslander-Reiten quiver I'(mod B). As a consequence, we
get a finite representation type criterion for algebras. We also present a
complete classification, by means of quivers with relations, of all concealed
algebras of Euclidean type, due independently by Bongartz [29] and Happel-
Vossieck [112].

In Volume 3, we introduce some concepts and tools that allow us to give
there a complete description of arbitrary representation-infinite tilted alge-
bras B of Euclidean type and the module category mod B, due to Ringel
[215]. We also investigate the wild hereditary algebras A = K(Q, where Q is
an acyclic quiver such that the underlying graph is neither a Dynkin nor a
Euclidean diagram. We describe the shape of the components of the regular
part R(A) of I'(mod A) and we establish a wild behaviour of the category
mod A, for any such an algebra A. Finally, we introduce in Volume 3 the
concepts of tame representation type and of wild representation type for
algebras, and we discuss the tame and the wild nature of module categories
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mod B. Also, we present (without proofs) selected results of the represen-
tation theory of finite dimensional algebras that are related to the material
discussed in the book.

It was not possible to be encyclopedic in this work. Therefore many
important topics from the theory have been left out. Among the most
notable omissions are covering techniques, the use of derived categories and
partially ordered sets. Some other aspects of the theory presented here are
discussed in the books [10], [15], [16], [91], [121], [235], and especially [215].

We assume that the reader is familiar with Volume 1, but otherwise the
exposition is reasonably self-contained, making it suitable either for courses
and seminars or for self-study. The text includes many illustrative examples
and a large number of exercises at the end of each of the Chapters X-XIV.

The book is addressed to graduate students, advanced undergraduates,
and mathematicians and scientists working in representation theory, ring
and module theory. commutative algebra, abelian group theory, and combi-
natorics. It should also, we hope, be of interest to mathematicians working
in other fields.

Throughout this book we use freely the terminology and notation intro-
duced in Volume 1. We denote by K a fixed algebraically closed field. The
symbols N, Z, Q, R, and C mean the sets of natural numbers, integers, ra-
tional, real, and complex numbers. The cardinality of a set X is denoted by
|X]. Given a finite dimensional K-algebra A, the A-module means a finite
dimensional right A-module. We denote by Mod A the category of all right
A-modules, by mod A the category of finite dimensional right A-modules,
and by I'(mod A) the Auslander-Reiten translation quiver of A. The ordi-
nary quiver of an algebra A is denoted by Q4. Given a matrix C' = [eij].
we denote by C' the transpose of C.

A finite quiver @ = (Qyp, Q1) is called a Euclidean qu1ver if the under-
lying graph Q of Q is any of the Euclidean diagrams A,,, with m > 1, ]D),,,.
with m > 4, IE(,, 1E7, and IEB Analogously, @ is called a Dynkin quiver
if the underlying graph @Q of Q is any of the Dynkin diagrams A,,,, with
m > 1,D,,, with m > 4, Eg, E7. and Eg.

We take pleasure in thanking all our colleagues and students who helped
us with their comments and suggestions. We wish particularly to express
our appreciation to Ibrahim Assem, Sheila Brenner, Otto Kerner, and Kunio
Yamagata for their helpful discussions and suggestions. Particular thanks
are due to Dr. Jerzy Bialkowski and Dr. Rafal Bocian for their help in
preparing a print-ready copy of the manuscript.
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Chapter X

Tubes

In Chapter VIII of Volume 1, we have started to study the Auslander
Reiten quiver I'(mod A) of any hereditary K-algebra A of Euclidean type,
that is, the path algebra A = KQ of an acyclic quiver @ whose underlying
graph Q is one of the Euclidean diagrams A,,,, with m > 1, fﬁ),,,. with m > 4,
IEG. ]E7. and Es. We recall that any such an algebra A is representation-
infinite.

We have shown in (VIIL.2.3) that the quiver I'(mod A) contains a unique
postprojective component P(A) containing all the indecomposable projec-
tive A-modules. a unique preinjective component Q(A) containing all the
indecomposable injective A-modules. and the family R(A) of the remain-
ing components being called regular (see (VII1.2.12)). This means that
I'(mod A) has the disjoint union form

['(mod A) =P(A)UR(A)UQ(A).

The indecomposable modules in R(A) are called regular. We have shown in
(VIIL.4.5) that there is a similar structure of I'(iod B). for any concealed
algebra B of Euclidean type. that is, the endomorphism algebra

B =EndT,

of a postprojective tilting module T4 over a hereditary algebra A = KQ of
Euclidean type. The algebra B is representation-infinite.

The objective of Chapters XI-XIII is to describe the structure of regu-
lar components of the Auslander-Reiten quiver I'(mod B) of any concealed
algebra B of Euclidean type.

We introduce in this chapter a special type of a translation quiver, which
we call a stable tube. The main aim of Section 1 is to describe special
properties of irreducible morphisms between indecomposable modules in
stable tubes of the Auslander-Reiten quiver I'(mod B) of an algebra B and
their compositions with arbitrary homomorphisms in the module category
mod B. In particular. some relevant properties of the radical radp and
the infinite radical rad} of the category mod B of finite dimensional right
B-modules are described.

In Section 2, we introduce the important concept of a standard compo-
nent and we prove Ringel’s handy criterion on the existence of a standard
self-hereditary stable tube in the Auslander Reiten quiver I'(mod B) of any
algebra B. By applying the criterion. we show in Chapter XI that the
regular components of any (representation-infinite) concealed algebra B of
Euclidean type are self-hereditary standard stable tubes.

1



2 CHAPTER X. TUBES

In Section 3, we introduce the concept of a generalised standard compo-
nent of I'(mod B), invoking the infinite radical rad of the category mod B.
and exhibit basic examples of generalised Gt(mdald components. The main
result of Section 4 is a characterisation of (generalised) standard stable
tubes obtained by Skowronski in [246], [247]. and [254]. It asserts that. for
a stable tube 7 in the Auslander-Reiten quiver I'(mod B) of any algebra
B, the following three statements are equivalent:

e 7 is a standard stable tube,

e the mouth of 7 consists of pairwise orthogonal bricks. and

e 7T is a generalised standard stable tube.
It is also shown that pd X = 1 and id X = 1. for any indecomposable B-
module lying in a faithful generalised standard stable tube 7 of T'(mod B).

Throughout, we assume that K is an algebraically closed field, and by
an algebra we mean a finite dimensional K-algebra. Given a finite quiver
Q = (Qo,Q1), we denote by KQ the path K-algebra of Q. We recall that
the dimension dimyx K'Q of K@ is finite if and only if the quiver Q) is acyclic.
that is, there is no oriented cycle in @), see Chapters II and III.

X.1. Stable tubes

We have defined in (VIII.1.1) the translation quiver ZX, for ¥ being a
connected and acyclic quiver. Thus, letting ¥ be the infinite quiver

Ao : o o o o o o
o i 2 3 4 m m+1

we obtain the infinite translation quiver

(1 1) (()l (—ll) ( 2.1) (—31)

f\/\/\/\f\

ZA . : ... (1.2) (0.2) ©0(=1.2) 0(-2.2)

\/\/\/\/\/

0(1.3) (0.3) (-1.3) " 0(—2.3)

f\/\/\/\/\

where 7(n,i) = (n + 1,i), for n € Z and i > 1. Thus, by definition,
7 is an automorphism of ZA,, and hence so is any power 7" of 7 (with
r € Z). For a fixed r > 1, let (7") denote the infinite Cyclic group of
automorphisms of ZA., generated by 77, and let ZA.. /(T denote the
orbit space of ZA. under the action of (7"). That is, ZAX/( is the
translation quiver obtained from ZA. by identifying each point (n. i) of
ZA . with the point 7"(n,i) = (n+r,i), and each arrow « : @ — y in ZA
with the arrow 77« : 7" — 77y. We are thus led to the following definition.



X.1. STABLE TUBES 3

1.1. Definition. Let (7, 7) be a translation quiver.

(a) (T.7) is defined to be a stable tube of rank r = r+ > 1 if there
is an isomorphism of translation quivers 7 = ZA /(7")

(b) A stable tube of rank r = 1 is defined to be a homogeneous tube.

(¢) Let (T.7) be a stable tube of rank r > 1. A sequence (xq,... ,: r,.) of
points of T is said to be a 7-cycle if 72, = @, 709 = 11, ... , T2, =
Tp_1-

For example, a stable tube of rank 3 is obtained from the quiver

I|"—'T 11 TJ| TJ)

I\/\/\/l
‘T/IZ\/\/‘\%W

A AW
SN

by identifying along the vertical dotted lines. thus giving the following
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Similarly, a homogeneous tube has the following shape

y =TT

r T3=TIT3

We observe that the translation 7 still acts as an automorphism over a
stable tube of rank » (that is the reason why such tubes are called stable),
and that 7" acts as the identity. The latter fact is expressed by saying that
any point of ZA./(7") is T-periodic of period 7.

We recall from Section IX.2 that a path ry — --- — x; in a translation
quiver is called sectional if 7x; 2 x;,_», for all i € {2,... .t}.

The following two definitions are of importance in the theory.

1.2. Definition. Let (7. 7) be a stable tube.

(a) The set of all points in 7 having exactly one immediate predeces-
sor (or, equivalently, exactly one immediate successor) is called the
mouth of 7.

(b) Given a point x lying on the mouth of the stable tube T, a ray
starting at x is defined to be a unique infinite sectional path

r=zx[l] - 22l 23] —2[d] — ... —2xm]— ...
in the tube T.

(¢) Given a point x lying on the mouth of the stable tube T, a coray

ending with x is defined to be a unique infinite sectional path
—smle— ... —m{dlr—Blr—2xa—(l]Jzr =2
in the tube T.

To see that the definition is correct, we note that, for each point x lying
on the mouth of a stable tube 7, there exists a unique arrow starting at
2 and a unique arrow ending at x. Because an arbitrary point in 7 is the
source (and the target) of at most two arrows, this implies the existence
of a unique infinite sectional path in 7 starting at x, and a unique infinite
sectional path in 7 ending with x.
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1.3. Definition. Let A be an algebra and C be a component of the
Auslander- Reiten quiver I'(mod A) of A.

(a) A ray point of C is defined to be a point X in C such that there
exists an infinite sectional path in C
X=X[1] = X[2] - X3 —X[4] — ... = X[m|— ...
starting at X and containing all sectional paths starting at X.
The corresponding A-module X is called a ray module. The unique
infinite sectional path starting at X is called the ray starting at X.
(b) A coray point of C is defined to be a point X in C such that there
exists an infinite sectional path in C

—mX— ... 24X —>BX -2 X —[1X=X

ending with X and containing all sectional paths ending with X.
The corresponding A-module X is called the coray module. The
unique infinite sectional path ending with X is called the coray
ending with X.

A ray point of a stable tube 7 and a coray point of a stable
tube 7 are defined analogously.

It is easy to see that if (7,7) is a stable tube and 2 is a point « in T,
then the following three statements are equivalent:

e I is a ray point of the tube T,
e 1 is a coray point of T, and
e 1 lies on the mouth of the tube 7.
Now we collect basic facts on the structure of any stable tube of I'(mod A).
1.4. Lemma. Let A be an algebra, and T a stable tube of rank r=ry > 1
of the Auslander-Reiten quiver I'(mod A) of A. Assume that (X1,....,X,)
is a T4-cycle of (indecomposable) mouth modules of mouth A-modules of the

tube T, that is, the modules X1, ... ,X, lie on the mouth of T and satisfy
TAXl = Xr.,TAXz = Xl. ‘e .T_,qX,' = X,-*l.

(a) For each i€ {1,...,r}, there exists a unique Tay
(t,) Xi=Xi[1] — X;[2] — Xi[3] — ... = Xi[m] — X;[m+1] — ...
i T starting at X;, and a unique coray
(¢;) ... —[m+1]X; —[m]X; — ... —B]X; — 2]X; — [1]X; = X,

in T ending with X;.
(b) Ewvery indecomposable A-module M in T is of the form M = X;[mn],
for some i€ {1,... ,r} and m > 1.
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(¢) Every indecomposable A-module M in T is of the form M = [m]X
for some s € {1.... .r} and m > 1.

(d) m]Xs = Xe_msr[m] and Xsm] = m|Xeim—1 . for each s €
{1.....r} and m > 1. where s — m + 1 is reduced modulo r — 1
ifs—m+1<0ors—m+12>r.

(e) Under the isomorphisms of A-modules

X=X 22X =X 02 m] X =X, m].
the coray (c¢;) has the form

[0

(¢,) «..=> Xicmm+l] — X, [m] — ... — X 2] — X,[1] = X,
(f) For any i € {1.....r} and m > 1. there erists an almost split
sequence

fiom+1
91.m

0 — Xi[m] =27 Xy [me1] ® Xoy [mo1] Gimet St

] Xit1[m]—0
in mod A, where we set X;[0] = 0 and X;44[j] = Xi[j]. for all
ie{l,....r}.j>1, and k € Z.

Proof. Assume that (X,...,X,) is a T4-cycle of mouth modules of
the tube T of rank » > 1. Then Xy,..., X, are indecomposable, lie on
the mouth of the tube 7, and there are isomorphisms 74X = X,., 74X =
Xi,...,74X, = X,_. Because the tube T is stable then there is a sur-
jective morphism f : ZAX — > T of translation quivers such that
f(—1, ) = X;. f( = Xo.....f(=r.1) = X, and the induced mor-
phism f ZA /(T ————«)T is an isomorphism. It is clear that the
conditions (a). (b). and (c) are satisfied in the translation quiver (ZA . 7).
Hence we easily conclude that (a). (b). and (c) hold in T. if we set X,[m] =
f(=i.m) and [m]X; = f(—i+m-1,m).

The statement (d) follows from (a). (b). and (c¢) by an easy induction on
m > 1.

Now we prove (e). It follows from (d) that, given i € {1.....r} and
m > 1. there are isomorphisms X, _,,[m+1] = [m+1]X; and X, _,,41[m] =
[m]X,;. Hence. the following arrow in the coray (c;)

Xicmm+1] =2 m+1X, —— [m]X; = X,_,,41[m]

corresponds to an irreducible morphism X; ,,[m + 1]— X,;_,,41[m] in
mod A. To prove (f). we note that in view of the shape of the stable tube
T, each of its vertices is a source of at most two arrows, and the arrows
correspond to some irreducible morphisms in mod A; thus yield a required
almost split sequence. The proof of the lemma is then complete. O

In the remaining part of this section we investigate properties of irre-
ducible morphisms between indecomposable modules in a stable tube T of



