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Elastic Instability Phenomena



Preface

The present work treats the buckling and post-buckling of engineering structures
and components, with an emphasis on the important non-linear features of
behaviour. The subject is developed from the foundation of structural dynamics,
and concentrates on the buckling of structures under conservative loading,
including the significant imperfection-sensitivity of stiffened plates and shells.

The book is intended for undergraduate and post-graduate courses in civil,
mechanical, marine, and aerospace engineering, and includes material that has
been taught for a number of years to undergraduate and MSc students of Civil
Engineering at University College and Imperial College, London. It can be seen as
a complement to two earlier books by the same authors. The first, 4 General
Theory of Elastic Stability,! by J. M. T. Thompson and G. W. Hunt, published by
John Wiley in 1973, was an advanced text on non-linear bifurcation theory,
dealing with the elastic buckling and post-buckling of conservative mechanical
systems and structures. The second, Instabilities and Catastrophes in Science and
Engineering,” by J. M. T. Thompson, published by John Wiley in 1982, described
in a more general, less technical way a wide variety of instability phenomena
drawn from the breadth of science and technology. It dealt with the dynamic
flutter instabilities of non-conservative systems in addition to the static buckling
instabilities of conservative systems, and related both to recent developments in
dynamical systems theory, of which catastrophe theory is a part.

This book returns to the theme and spirit of the first of those works,! which it
complements and completes in a number of important ways. It is restricted to
conservative systems, and presents first, the underlying dynamical framework in
which instability problems should properly be viewed: these foundations, based
on the Lagrange equations, were not presented explicitly by Thompson and
Hunt.! Second, it relates the engineering theory of elastic stability to recent
advances in singularity theory which come under the name of catastrophe theory.
This broadens the context of the work, and adds some useful new points of view,
including the important mathematical concept of a structurally stable topology.
A significant third contribution is a full extension of the earlier outline of
interactive buckling at compound branching points, in which the topological view
is found to contribute non-trivially, leading to a deeper understanding than had
hitherto been available.

Closely related as it is to our earlier books, we have nevertheless tried to make
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this book as self-contained as possible. This has inevitably involved a little
repetition and overlapping of our previous work, but we have kept this to a
minimum by presenting, whenever possible, an alternative view using different
illustrative examples.

Chapter 1 lays the conceptual foundations of stability theory. The principles
are developed gradually but systematically through physically understandable
examples, starting with the simple oscillations of a pendulum. It gives a thorough
treatment of the general conservative mechanical system based on the Lagrange
equations. Stability is defined in the manner of Liapunov by the form of the phase
trajectories close to an equilibrium state, and the powerful energy theorems are
established. Linear and non-linear conditions for a minimum of the total
potential energy are presented, leading to the definition of stability coefficients
and normal modes of vibration.

Chapter 2 presents multi-mode linear eigenvalue analyses of beams and
columns. Fourier expansions yield complete closed-form results for the vibration
and buckling of struts, while discontinuous Rayleigh—Ritz modal analyses
serve as an introduction to finite element methods.

Chapter 3 introduces loads and imperfections as control parameters modifying
the potential energy of the system. It looks briefly at related fields that are covered
by the present theory,? including the thermodynamics of stars and the fracture of
crystals. The elimination of passive coordinates is presented, showing how the
buckling modes alone govern the incipient instability of a structure. Evolution
under an increasing load leads to a bifurcational view of instability phenomena,
and four common distinct critical points are delineated, along with two
basic theorems recently proved by mathematical topologists. Imperfections
perturb these bifurcations, generating imperfection-sensitivity phenomena.
Mathematical ideas of topological stability allow the numeration and identifi-
cation of active control parameters (loads, imperfections, and geometrical
parameters) essential for the full description of a given singularity. The chapter
ends by looking at the catastrophe theory classifications of Thom and
Zeeman® “3and the related but finer bifurcational classifications of Golubitsky
and Schaeffer.®

Chapter 4 looks in detail at single-mode buckling phenomena at distinct
critical points. For each form of instability the simplest universal expression for
the local governing potential function is given: link models, struts, and frames are
used as illustrative examples. The fold catastrophe is seen to generate first, the
limit or snap-buckling point, and second, within a bifurcational view, the
asymmetric point of bifurcation. The cusp generates the stable-symmetric and
unstable-symmetric points of bifurcation: requirements of structural stability
under general and bifurcational formalisms are discussed. Routes through
catastrophes are used to illustrate the emergence of the bifurcational viewpoint,
and a non-symmetric control route through a cusp is seen to generate a cut-off
point familiar to engineers in the buckling of shallow arches and domes. Two
higher-order one-mode singularities are finally discussed, with a consideration of
the reduced Euler buckling load used in approximate engineering analysis.
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Chapter 5 is devoted to a new analysis of stress-free and pre-stressed arches
which are now used almost universally as a classical laboratory demonstration of
imperfection-sensitivity in the unstable-symmetric point of bifurcation. Buckling,
post-buckling, and imperfection-sensitivity predictions agree well with the
available experimental results of Roorda. The explicit identification of a
constraint condition throws new light on the complex contorted equilibrium
paths of arches under central point load.

Chapter 6 starts by looking at the simultaneous compound buckling of a
spatially guyed cantilever. The post-buckling and imperfection-sensitivity of the
semi-symmetric points of bifurcation are then discussed, including the effects of
four control parameters, namely the load, an imperfection in each buckling mode,
and a splitting parameter (normally a geometric parameter in a particular
buckling problem) that controls the gap between the two distinct bifurcations
involved. As an example of the universal unfolding of the umbilic catastrophes,
the homeoclinal, anticlinal, and monoclinal points of bifurcation are studied in
detail, and computed imperfection-sensitivity surfaces are presented and de-
scribed. Fully asymmetric points of bifurcation are classified using a Lagrange
Multiplier technique, and routes through the umbilic catastrophes are explored.
Higher-order two-mode singularities are sketched, including parabolic umbilic,
recently identified as of fundamental significance in interactive buckling, and the
double cusp, which is relevant to the compound buckling of elastic plates.

Chapter 7 presents a comprehensive bifurcation analysis of the general system
governed by a potential energy function of n coordinates and h controls, first
published in the Philosophical Transactions of the Royal Society. The system is
presumed to exhibit a single-valued fundamental path under the evolution of a
distinctive primary control, normally a load. Sliding coordinates are then used to
define a new incremental energy function. Active and passive coordinates are
segregated, and the latter are eliminated locally using a preliminary perturbation
scheme to give a transformed energy function of the active coordinates alone: the
original equilibrium and stability axioms hold good for this new energy function
of m active coordinates. Appropriate identities for the specification of equilibrium
states, critical states, and secondary bifurcations are presented explicitly, and
alternative perturbation schemes are outlined. The concepts of generalized loads
and generalized imperfections are introduced, and some hints for computer
solutions are given. The comprehensive bifurcation analysis is illustrated by
application to the semi-symmetric branching points which involve compound
buckling in two simultaneous modes.

The last chapter looks at some engineering buckling problems in the light of
the foregoing phenomena and analytical techniques. The elimination of passive
coordinates within a diagonalized energy formulation shows explicitly how the
total quartic energy derivatives with respect to the active coordinates are
contaminated by cubic derivatives of the non-critical passive buckling modes:
this is a crucial point in the following discussions. A brief look at structural
optimization and its associated symmetries highlights the important role that
these play in all buckling problems.
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The distinctive post-buckling of struts and plates are then examined, and an
approximate energy analysis due to Koiter is used for the latter to highlight the
previously mentioned general features. The practically important interactive
buckling of stiffened structures, very much a current research topic,’ is examined
in the light of the controlling parabolic umbilic catastrophe. The higher-order
singularities governing the instability of compressed cylindrical and spherical
shells are discussed following Koiter’s classic contributions. The chapter ends
with a brief discussion of the dead and rigid loading of laboratory model
structures, while a proof of the Lagrange and Hamilton equations is given as an
Appendix.

An extensive list of modern references supplements and updates the compre-
hensive lists in our earlier books.!:2:7



Contents

Preface. . . ... ... ...
The General Conservative System. . .............................
1.1  Generalized coordinates ................. ... ...
1.2 Lagrange equations ..................iiiirinaininennnn..
1.3 Statical equilibrium ........ ... .. ... ...
1.4 Stability definition . .......... ... ... ... ... ...
1.5 Energy theorems. ...... ... .. ... ... ... ... ... ... ...

1.6 Conditions for a minimum
1.7 Stability of a critical state

1.8 Linear vibrations ................. ... .. ... ... . ... ......
Vibration and Buckling of Beams and Struts. . . .............. .. ...
2.1 Beam formulation. ............ .. ... .. ... ... ... ... . .......
22 Modal expansions. . .......... i
2.3 Complete harmonic analysis of a column ........... ... .....
2.4 Vibration of a cantilever in twomodes .....................
2.5 The finite element method. . ......... ... ... ... ... ... .......
2.6 Buckling of a strutin fourmodes . .......... ... ... ... .....
Loads and Imperfections. . . .......... .. ... ... ... ... ... ........
3.1 Related fields of applicability . .............................
3.2 Elimination of passive coordinates .........................
3.3 Loss of stability under load ...............................
3.4 Imperfections and perturbed bifurcations. ...................
3.5 Elimination of passive controls ............................
3.6 Catastrophes of Thom and Zeeman ........................
3.7 Bifurcations of Golubitsky and Schaeffer. ...................
Distinct Buckling Phenomena . .................................
4.1 The fold singularity .......... ... oo,

1X

~ N W - -

21
23

27
27
29
31
33
34
37

40
40
42
43
47
53
56
58

60
60



Vi

4.2 Snap-buckling at a imit point.............................
4.3 Asymmetric point of bifurcation ................... ... ... ..
44 Routes throughthefold ..................................
45 The ' cusp SIGUIATIEY . c . « w555 & win suio s ave 55 s 515505 5 515§ 5 5 505 5 0 81
4.6 Stable-symmetric point of bifurcation.......................
4.7 Unstable-symmetric point of bifurcation . ...................
4.8 Routes throughthecusp.......... ... ... ... ... . ... .....
49 Higher-order uni-modal singularities .......................
Buckling and Imperfection-Sensitivity of Arches.............. ... ..
5.1 Simplification via inextensibility ...........................
5.2 Strain energy with arbitrary pre-stress......................
5.3 Expansion in Fourier harmonics...........................
5.4 The constraint condition. .................................
5.5 Linear eigenvalue analysis. .. ..............................
5.6 Post-buckling analysis............. ... .. ... .. .. ... ........
5.7 The real perfect response. . ...............c.iiiiiiiia....
5.8 Imperfection-sensitivity analysis. . ..........................
5.9 Comparison with experiments . ............................
5.10 Tilt as a second imperfection .. ............................
S.11 Convolutions in the symmetric response . ...................
Interactive Buckling Phenomena . .. ......... ... ... . ... . ... ..
6.1 The guyed cantilever ...................... .. ... ... ...
6.2 Semi-symmetric points of bifurcation.................. ... ..
6.3 Imperfection-sensitivity surfaces............................
6.4 Fully asymmetric points of bifurcation......................
6.5 Routes through the umbilic catastrophes....................
6.6 Higher-order two-mode singularities. . ......................
Comprehensive Bifurcation Analysis.............................
7.1 Bifurcational formalism................. ... ... ...........
7.2 Elimination of passive coordinates .........................
7.3 Perturbation analysiS...................... ...
7.4 Generalized imperfections. . ...............................
7.5 ‘Generalized 108dS. .ciusvvsusassasmsssmassas oo snssamsnsms
7.6 Illustration of compound semi-symmetric buckling...........
Buckling of Plates and Shells. . .. ..... ... . ... .. ... ... .........
8.1 Analysis using principal coordinates........................
8.2 Symmetry and optimization...............................
8.3 The Buler STEUL cu v mvmssmsmsmsmsmsmsmsssmame kv smea s s ws
8.4 Post-buckling of a compressed plate. .......................
8.5 Interactive buckling of stiffened structures. ..................

8.6 The axially compressed cylindrical shell. ................. ...

63
64
72
73
75
81
83
86



8.7 The externally pressurized spherical shell. ................... 184
8.8 Rigid and semi-rigid laboratory loading devices.............. 188
Appendix : Proof of the Lagrange and Hamilton Equations . ........ ... 195
References. . .......... ... . .. .. ... 198



The General Conservative System

In this opening chapter we consider the dynamics and stability of a general n-
degree-of-freedom conservative mechanical system, based on the Lagrange
equations of motion. Here we define a conservative mechanical system as one
whose generalized forces are completely derivable from a potential energy
function V(Q,). We thus exclude gyroscopic systems, despite the fact that they do
also conserve energy. We admit, however, on occasions the presence of a small
amount of positive definite viscous damping. This changes pathological centres
into asymptotically-stable foci in the phase-space, and allows the proof of the
converse of the Lagrange energy theorem.

The Liapunov definition of stability is employed, and the equilibrium and
stability axioms necessary for our later work are established. Conditions for a
minimum of the total potential energy are analysed at length, and the chapter
ends with a presentation of normal-mode linear vibration theory.

Discrete mechanical models are analysed throughout the chapter, and the
theory is further illustrated by the strut analyses of the following chapter.

1.1 GENERALIZED COORDINATES

Spatial configurations of our general mechanical system are to be specified by a
set of n generalized coordinates, written as

01,02,05....0,

or more briefly as Q,, where i is understood to take values from one to n. Here the
number n represents the degree of freedom of the system. We require that there
shall be a unique one-to-one correspondence between the spatial configurations
of our system and the set of values of the coordinates. Thus if we introduce an n-
dimensional state space by associating the algebraic variables Q, with a set of n
rectangular axes, as shown schematically in Figure 1.1, there will be a unique,
one-to-one correspondence between spatial states of the system and the points of
this space.

This one-to-one correspondence need not always be global, but must hold
locally to the region of our immediate discussion. For example, local con-
figurations of the rigid pendulum of Figure 1.2 can always be specified by the
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Figure 1.1 Schematic diagram of a trajectory in state space

| Figure 1.2 A simple rigid pendulum

angle Q, as a single generalized coordinate. Alternatively, the horizontal
displacement x can be employed, being valid except in the region of Q, =
90 degrees or 270 degrees: as a second alternative generalized coordinate we
can employ the vertical displacement y except in the region of Q, = 0 degrees or
180 degrees.

For the small-but-finite deflections of a beam or stretched wire, the mathemati-
cal continuum problem can be discretized by either a classical modal analysis or
by a numerical finite-element analysis. In the classical analysis we might, for
example, use the harmonic amplitudes Q,, Q,, Q,... as our generalized
coordinates as illustrated in Figure 1.3, and the fact that the number of coordinates,
n, is now strictly infinite will be largely ignored in our discussions. This step,
although naturally distressing to mathematicians, rarely gives rise to any real
problems in physics and engineering.

Just as any point in state space represents a unique admissible spatial position
of the system, so a trajectory in state space is assumed to represent a unique
admissible motion of the system. In the terminology of Synge and Griffith® the
general mechanical system is therefore holonomic with, for example, no differen-
tial constraints that can arise in the three-dimensional rolling of wheels.

The general system is also assumed to have no time-dependent constraints and

Q,

S
\ﬁ Figure 1.3 Discretization of a continuum by the use of

Q, Fourier harmonics
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no time-dependent forces, so the time ¢ will not appear explicitly in the potential
or kinetic energy expressions, and it is therefore also scleronomic.®

1.2 LAGRANGE EQUATIONS

We now suppose our general mechanical system to be conservative and
undamped, comprising, for example, internal elastic elements and external
conservative fields (gravitational or otherwise), so that all forces of the system are
derivable from a total potential energy function V which is a function of only the n
generalized coordinates Q,. We write this simply as

=VI(Q) (L.1)

The kinetic energy T will be primarily a quadratic function of the rates of
change of the coordinates

do, .
E =0, (1.2)

SO we can write

T:%THQ% +15T12Q1Q2 + +%TInQ1Qn
+%T21Q2Q1 + %Tzng Fee +%T2nQ2Qn

+%T31Q3Q1 +
2 e (1.3)
This can be written more compactly as
Wl el .
T:j Z Z TijQin (1-4)
i=1 j=1
and even more concisely as
T:%’I;jQiQ,' (1.5)

if we adopt the dummy-suffix or tensor notation due to Einstein, which says that
any suffix occurring more than once in a product must be summed over all its
values. In an expression of this type in which the ultimate meaningful coefficient
of Qs Q. (say)is 5(Ts, + T,s) itis convenient to specify, as we are quite free to, that
the matrix T,; is symmetric, so the Ts, =T, etc.: the ultimate meaningful
coefficient can then be written more compactly as simply Ts-.

This form for the kinetic energy is quite general if we acknowledge that the
coefficients T;; may themselves be functions of the generalized coordinates (but
never a function of the rates, or of the time ¢ explicitly). Whether, in a given
problem, the coefficients T,; are, or are not, functions of the Q; depends not
necessarily just on the system but also on the coordinates used to describe the
system, as we shall illustrate shortly for the simple rigid pendulum. To remind us
of this possible dependence we write the set of coefficients T, ; as T;;,(Q,), so that
our final form for the kinetic energy function is

T=%’rij(Qk)Qin (1.6)
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Since no elemental contribution to the kinetic energy of a system can be negative,
this is a positive—definite form being always positive unless the system is
completely at rest (when it is zero).

If we introduce the Lagrangian function, ¥, as simply the difference between
these two energies,

£(01,0,)=T(Q:,0) — V(Q) (L.7)

all dynamical motions of our general system will be governed by the Lagrange
equations

gag_ay_o
droQ, 00,
d 0.2 aggw
dreQ, 00,
(1.8)
doy o9
ol 8% a

dr 29, a9,

These are written more concisely as

doy 0¥ 0

dt0Q, 00,
where the free suffix i (which is not repeated in any product) is understood to yield
a set of equations as it takes all its values from one to n (even if this is not specifi-
cally indicated).

These Lagrange equations can be established from Newton’s Laws, as outlined
in the Appendix for a wider class of (non-conservative) systems, or they can
themselves be regarded as fundamental.®

Because our system is conservative, we can finally note that the total energy

E=T+V (1.10)

(i=1,2,...n) (1.9)

will remain constant during any real motion of the system, corresponding to the
principle of conservation of energy.

Example: a rigid pendulum

We shall illustrate the foregoing theory for the pendulum of Figure 1.2,
comprising a light rigid rod of length L, freely pivoted at one end and carrying a
concentrated mass m at its other free end. It is assumed to be acted upon by an
external gravitational field of uniform strength g, as would be valid if L were small
compared with the radius of the earth. This model is of our general type with a
single degree of freedom, so that n= 1.

The total potential energy of the model, ignoring the mass of the rod, is simply
the gravitational potential of the concentrated mass m, and measuring its height



arbitrarily from the pivot as datum, we have

V(Q,) = mgLcos Q, (L11)
This can if necessary be expanded as
V(Q,)=mgL(l =507+ ) (1.12)

valid for small Q,.
The kinetic energy is simply +m times the square of the tip velocity (ignoring
again the mass of the rod), so

T(Q,) =ymL*Q7 (1.13)

We notice in passing that had we employed not Q, but the horizontal
displacement x as our single generalized coordinate we would have obtained

V(x)= £ mgL[l —(x/L)*]"? (1.14)
and
T(x,%)=4mL*(X/L)*[1 — (x/L)*]"! (1.15)

where we see that T is a function of both x and x. This is a perfectly valid
formulation (away from the configurations given by Q, =90 degrees or 270 de-
grees) which could be used to obtain the equations of motion in terms of the
coordinate x.

We return, however, to our formulation in terms of the angle Q,, and observing
that #=T—V and

0¥ 0T .
=t =i, (1.16)
aQ, 00,
d 0¥ -
- =ml? )
dT (—)Ql m Q] ‘l 17)
0¥ av .
= ———=mygLsin l.
a9, 00, mgLsing, (115)
the single Lagrange equation
d oy o
— - = (1.19)
droQ, @9,
gives
mL*Q, —mgLsinQ, =0 (1.20)

This is the exact differential equation of motion that we could have obtained by
the straightforward application of Newton’s Laws.

1.3 STATICAL EQUILIBRIUM

It follows from the Lagrange equations that the necessary and sufficient condition
for statical equilibrium involving no motion of the system is the vanishing of all
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first derivatives of V,
V.= E-V
=30,
Here, and subsequently, we are using the ‘equals in all respects’ symbol = to
indicate a simple notational equivalence or definition.
Following our earlier studies' we write this condition formally as an axiom, to
emphasize its fundamental role in the subsequent theory.
AXIOM 1
A stationary value of the total potential energy with respect to the generalized
coordinates is necessary and sufficient for the equilibrium of the system.
We shall see that we need only one further axiom based on the total potential
energy, concerning the stability of equilibrium, to provide the foundations of a
substantial body of practically important work in the theory of elastic stability.!

Now a general Taylor or power series expansion of the energy V about an
equilibrium state Q, = QF can be written in terms of the incremental coordinates

=0 (for all i) (1.21)

4:=0;,— 0 (1.22)
as
i=n aV ll n j=n E
V=VE4 4.9,
Z ,—Zl ]Zl 6Q 5Q !
+ higher-order terms (1.23)

In this we can always ignore the arbitrary constant V* = V(Q¥) and the following
linear term vanishes completely by virtue of our equilibrium condition V£ = 0.
The Taylor series thus starts with the quadratic form, and if we write
E

=V}, etc. (1.24)

o*V
20,0¢ Q

and employ the tensor summation convention, we have concisely

V=3V}4q.q;+ higher-order terms (1.25)

Example: a rigid pendulum

Using by way of an illustration our derived total potential energy expression for
the rigid pendulum

V=mgLcosQ, (1.26)

which for small values of Q, can be expanded about the inverted equilibrium state
Q,=0as

V=mgL(l —31Q%+ ") (1.27)
we have
V, = L4 Lsin Q 1.28
—— = —mgLsi .
1 20, g 1 ( )



