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INTRODUCTION

In his seminal paper [51], Atle Selberg introduced fundamental new ideas into the
classical theory of automorphic forms, a theory whose origins lie in the works of
Riemann, Klein, and Poincaré. These ideas are connected with an extension of the
earlier notion of an automorphic function (or form). Instead of an analytic automor-
phic function, Selberg considered a mapping which is automorphic relative to a
given finite-dimensional unitary representation of a discrete group and is an eigen-
function for a commutative ring of elliptic differential operators. At that time Hans
Maass’ article [36] had appeared, containing similar nonanalytic automorphic “wave”
functions defined in a special situation; however, it was Selberg who first took a
serious look at Maass’ work. In order to implement the new ideas, certain new
techniques, not normally used in the classical theory of automorphic functions, were
invoked: first, methods from the theory of selfadjoint operators in Hilbert space;
then, methods from group representation theory over various fields, methods which
turned out to be more natural in spaces of rank greater than one. It was the
subsequent global development of Selberg’s ideas in the setting of the representation
theory of Lie groups which determined the true place of the classical theory of
automorphic functions—in both its function theoretic and number theoretic aspects
—in the new more general theory, and also clarified the interaction between the old
and new theories.

It is now already possible to speak of the “Selberg theory”, although this theory is
still in its initial stages of development. The foundation of the theory consists of:

1) theorems on expansion in automorphic eigenfunctions of Laplacians;

2) Selberg trace formulas; and

3) the theory of the Selberg zeta-functions.

Here one should also include several very important applications of a theoretical
nature (some of which we recently examined in the survey article [66]):

4) applications to global problems in modern number theory, in particular, to the
arithmetic theory of automorphic forms (the so-called “Langlands philosophy™);

5) (') applications to solving some difficult concrete problems in number theory.
for example, the proof of the refined Kummer conjecture on cubic characters (see
(17]:

1980 Mathematics Subject Classification. Primary 10D05, 10D20, 10D40, 10H10, 32N05, 32NI5:
Secondary 10H26, 20H10, 22E40, 30D0S, 30D15, 30F35.

(")Further references to articles on these topics in Selberg theory can be found in our survey article [66]
and in the works cited there.
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6) applications in the theory of geometric and topological invariants of Rieman-
nian manifolds;

7) the Selberg zeta-function from the point of view of analytic number theory, in
particular, the Selberg zeta-function and the Riemann zeta-function;

8) Selberg theory and quasiconformal mappings of Riemann surfaces (see [11] and
[12]); and

9) the Selberg trace formula from the point of view of the spectral theory of
selfadjoint operators in Hilbert space as a model of stationary and nonstationary
scattering theories; applications to classical (Dirichlet, Neumann) boundary value
problems of mathematical physics.

In this monograph we shall primarily be interested in questions concerning the
foundations of Selberg theory and those applications which have a function theoretic
character, corresponding in the above list to items 1)-3), 8) and 9), and parts of 6)
and 7). We shall call this entire circle of questions the spectral theory of automor-
phic functions. We are then almost forced to choose to work with weakly symmetric
space (in Selberg’s sense) and the set of discrete groups acting on it: the Lobachevsky
plane and Fuchsian groups of the first kind. In fact, it has recently become apparent
that the theory of automorphic functions in spaces of rank greater than one is for
objective reasons an arithmetic theory, in essence a branch of modern number
theory. Conversely, the hyperbolic plane stands out—even among the other spaces
of rank one—by the abundance of different discrete transformation groups, among
which the arithmetically defined groups occupy a very modest place; this is what
makes the spectral theory of automorphic functions particularly significant. The
choice of Fuchsian groups of the first kind is dictated by the good spectral properties
of the automorphic Laplacian (finite multiplicity of the continuous spectrum), the
Selberg zeta-function (continuation onto the entire plane, a functional equation, low
order of meromorphicity), and also by certain traditional applications.

We now give a more detailed description of the contents. Chapter 1 is introduc-
tory; it contains the necessary notation and several definitions and auxiliary facts.
Chapter 2 is devoted to a proof of the theorem on expansion in eigenfunctions of the
automorphic Laplacian A(I'; x) for an arbitrary Fuchsian group of the first kind T
and an arbitrary finite-dimensional unitary representation x of I' (such a choice of T
and x will be written I' € I, x € N(T'); see §1.2). We shall pay particular attention
to the most difficult situation I' € It,, x € N (I'), where, by definition, M, is the
set of all groups I' € It having noncompact fundamental domain, and % (T') is the
set of all so-called singular representations x € R(I'). Whenever T' € I, and
X € N (T), the spectrum of the operator A(I; x) is not purely discrete; it also
contains an absolutely continuous spectrum of multiplicity equal to the total degree
of singularity of the representation x relative to the group I'.

The proof of the theorem generalizes L. D. Faddeev’s proof of a less general
theorem on expansion in eigenfunctions of the operator %(T; 1), where x = 1 is the
trivial one-dimensional (and thus singular) representation of I' € ¢, (see [9]). The
proof is based on a study of the resolvent R(s; I'; x) of the operator %(T’; x) using
methods from the theory of perturbations of the continuous spectrum of selfadjoint
operators. This proof includes several steps. The kernel of the resolvent as an
integral operator far from the spectrum is studied in §2.1. We then construct an
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auxiliary operator B(s; I'; x), which is uniquely determined by R(s; I'; x), and, by
means of a certain integral equation, continue it analytically to a neighborhood of
the spectrum of A(T; x) (more precisely, to part of the Riemann surface Re s > 0,
which is a two-sheeted covering of the spectral plane containing the spectrum; see
§1.4). We shall call this integral equation the Faddeev equation, since it was first
introduced into the spectral theory of automorphic functions in [9] in the scalar case
(dim V = 1, V the space of the representation x) for the trivial representation x. The
next steps in the proof of the expansion theorem are meromorphic continuation of
the kernel of the resolvent to a neighborhood of the spectrum and the investigation
of the singular points of the resolvent (§2.2). Finally, by determining the eigenfunc-
tions of the continuous spectrum of 9 (I'; x) in terms of its resolvent, finding the
scattering matrix and proving certain of its properties, we are able in §2.3 to
complete the proof of the theorem on expansion in eigenfunctions of 2(I; x).

There is another proof of the expansion theorem for A(I'; x) which is also valid
for arbitrary I' € M, and x € N (I'). It was published in [46] by Roelcke, who
assumed a very essential conjecture concerning meromorphic continuation of Eisen-
stein series. The conjecture was later proved in a famous paper by Langlands [33].
However, we wish to emphasize that our method of proof is preferable in our case
(for the Lobachevsky plane and for any space of rank one), since it enables one to
obtain additional information concerning the spectral properties of %(T'; x), more
precisely, the properties of its resolvent; this information is of great importance in
constructing an analog of Artin theory for the Selberg zeta-function (see §6.2), and
also in studying the spectral properties of % (I'; x) under a deformation of the group
I" (see §7.1).

Chapter 3 is devoted to a refinement of the theorem on expansion in eigenfunc-
tions of A(T; x) relating to the part of the theorem concerning the continuous
spectrum. In §3.1 Eisenstein series are defined for a group I' € M, and a representa-
tion x € N (T'). (These series are the meromorphic continuation of the eigenfunc-
tions of the continuous spectrum of A(T’; x).) We then construct their Fourier
expansion relative to parabolic subgroups I', C I'. Such expansions have only been
considered before in the scalar theory (dim¥ = 1) (see [50] for x a nontrivial
representation, and [28] for x the trivial representation).* At the end of §3.1 we
prove meromorphicity of Eisenstein series (i.e., the basic hypothesis in Roelcke’s
paper [46]) and meromorphic continuation of the kernel of the resolvent to the entire
Riemann surface which is a double covering of the spectral plane. The proof of these
results is based on Chapter 2, which, in particular, gives us meromorphicity of the
scattering matrix, a functional equation for the scattering matrix, a functional
equation for Fisenstein series, and, finally, a functional equation for the kernel of
the resolvent of A (T'; x).

In §3.2 we give a description, based on [46], of the Maass-Selberg relation. The
first part of §3.3 is devoted to a certain intrinsic characterization of the subspace of
the continuous spectrum, and, to a lesser extent, the subspace of the discrete

*Translator’s note. The general case was also considered by Polly Moore, Generalized Eisenstein series:
incorporation of a nontrivial representation of T', Ph. D. dissertation, Univ. of Washington, Seattle, Wash.,
1979.
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spectrum of % (T'; x) in a suitable Hilbert space JC(I'; x). The theory developed here
uses elements of the spectral theory of Selberg [52], Roelcke [46], Godement [14],
Langlands [33], and Kubota [28], with emphasis on the properties of Eisenstein
series and the Maass-Selberg relations, and especially uses the theorem on expansion
in eigenfunctions of %(T; x), proved in Chapter 2 based on Faddeev’s method in the
scalar theory of automorphic functions. Part 2) of Theorem 3.3.2 is a version for
resolvents of the well-known theorem of Gel’fand and Pjateckii-Sapiro (see [13],
Chapter 1, §6, or [16], Chapter I, §2). In the second part of §3.3 we introduce a
fundamental class of integral operators to be considered in the spectral theory, and
we prove some properties of these operators. They were first introduced by Selberg
in [51]. The idea of studying these operators by means of the resolvent R(s; I'; x)
arose in the scalar theory in work by L. D. Faddeev, V. L. Kalinin and the author
(see [72)).

In §3.4 we derive a vector version of the integral equation, which we call the
Selberg-Neunhoffer equation. This integral equation was first proposed to Selberg to
prove meromorphicity of Eisenstein series in the scalar theory (dim V' = 1) (see [50]).
Later, it was reconsidered by Neunhoffer in [39], also in the framework of the scalar
theory. We note that the study of the Selberg-Neunhoffer equation is the basis for
the third of the methods presently known for proving meromorphicity of Eisenstein
series for I' € M, and x € N (I') (see [66], §8). Unlike in [39] and [50], in §3.4 we
derive the Selberg-Neunhoffer equation (dim ¥V = 1) from the Faddeev equation,
using the information about the resolvent R (s; I'; x) of A(I'; x) in Chapter 2, for a
single purpose—finding an a priori estimate for the order of meromorphicity of the
Eisenstein series and the scattering matrix. In §3.4 we finish our treatment of this
theorem.

§3.5 is devoted to studying the properties of the determinant of the scattering
matrix. Here we generalize results of the scalar theory due to Selberg (see [50]). The
basic result of the section is Theorem 3.5.5, which gives a special canonical product
over the zeros and poles of the determinant which is different from the Weierstrass
product.

Chapter 4 is concerned with proving the Selberg trace formula in the general
situation I' € M, x € N(T'). Again we emphasize the most difficult and least
well-known case I' € M ,, x € N (I'). In §4.1 we prove nuclearity of the operator
K(T; x)B (T x), where B (T'; x) is the orthogonal projection in the Hilbert space
J(T; x) onto the subspace J(,(I'; x) of cusp-vector-functions. The proof of the
theorem is based upon ideas from the theory of perturbations of continuous spectra
(see [72]) and results from Chapter 2. In §4.2 we justify the spectral trace formula;
this reduces to proving uniform convergence of certain integrals. Our method
generalizes the method in [72] and the Selberg-Arthur method for justifying the trace
formula for arithmetic groups in the rank one case (see [1]).

In §4.3 we transform the spectral trace formula in §4.2 to the Selberg trace
formula. The following special cases of the Selberg trace formula for I’ € I, and
x € N(I') are well known and have often been examined in the literature: 1)
I'e M, and x € N(T) (see [51],[13],[19] and others); 2) T € M,, x € N (T) and
dim ¥ =1 (see [50],[28] and [72]); 3) ' € M, and x € N (T) (see [51]); and 4) T is
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an arithmetic group in M, and x € N (T) (see [23],[7],[1] and [18]) (see §1.2 for the
notation). However, the general case of the Selberg trace formula for I' € M, and
x € N(T) has not been considered before, as far as we know, either in the
published literature or in Selberg’s lectures at Princeton (1952) and Gottingen (1954)
(see [50]); hence, we shall concentrate our attention in §4.3 on this case. The Selberg
trace formula which we obtain for a general group I' € I, and a general represen-
tation x € N (T) clearly includes all of the earlier trace formulas 1)-4).

At the beginning of §4.4 we give a proof of a vector version of an asymptotic
formula which we have referred to as the Weyl-Selberg formula (see [68]). In the
scalar theory this formula was first obtained by Selberg (see [50]). In our opinion it is
the natural generalization, in the spectral theory of a self-adjoint operator whose
spectrum is not in general purely discrete, of Hermann Weyl’s classical asymptotic
formula for the distribution function of the eigenvalues of an operator with purely
discrete spectrum. In §4.4 we also give an a priori estimate for the distribution
function of the values of the norms of primitive hyperbolic conjugacy classes in a
group I' € M,. Using these two results, later in §4.4 we refine the order of
meromorphicity of the determinant of the scattering matrix, and, finally, we give an
extension of the Selberg trace formula to a broader class of functions than in §4.3.

Chapter 5 is devoted to the theory of the Selberg zeta-function and its spectral and
geometric applications in the general situation I' € M, and x € N(T'). In §5.1 we
give the definition and prove the basic properties of the Selberg zeta-function
Z(s; T; x). The function Z(s; T'; x) is connected with the Selberg trace formula in
the same way as the Riemann zeta-function is connected with Weil’s “explicit
formula” in analytic number theory. Thus, all of the basic properties of Z(s; I'; x)
are determined by the Selberg trace formula. In §5.1 we prove a fundamental
formula for the logarithmic derivative of the Selberg zeta-function (Theorem 5.1.1).
This formula gives us meromorphicity of Z(s; I'; x), a functional equation, and also
a complete description of all the zeros and poles of the zeta-function (Theorems 5.1.3
and 5.1.4). In [68] we published similar results for the scalar theory of the zeta-func-
tion Z(s; IT'; x)(dim ¥ = 1); the stimulus for all of these investigations was the brief
remarks of Selberg at the end of his lectures [50].

§5.2 is devoted to estimating the remainder in the Weyl-Selberg asymptotic
formula. More precisely, we construct an asymptotic formula with three principal
terms and a remainder term of order O(7/In T') (Theorem 5.2.1); here the justifi-
cation for the first principal term is the content of Theorem 4.4.1 in §4.4 and was
what lead to the Weyl-Selberg formula. The derivation of the formula is based on
the theory of the Selberg zeta-function Z(s; I'; x), and is a spectral application of
that formula. The method of proof generalized a method well known in analytic
number theory for constructing an asymptotic formula for the number of nontrivial
zeros of the Riemann zeta-function in a “large” rectangle in the critical strip (see, for
example, [57]). Hejhal [19] and Randol [44] obtained the analogous formula for a
group I' € It and the trivial one-dimensional representation x, and the author [68]
did the same for a group I' € M, and x € N (T) (dim V' = 1).

The purpose of §5.3 is to derive an asymptotic formula for the distribution
function for the values of the norms of primitive hyperbolic conjugacy classes in a
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given Fuchsian group. This formula should be regarded as the geometric application
of the theory of the Selberg zeta-function Z(s; I'; x) which we develop in §85.1 and
5.2. The formula is analogous to the refined asymptotic law for the distribution of
prime natural numbers, and it is connected with the Selberg zeta-function in the
same way as that asymptotic law is connected with the Riemann zeta-function. In
the theory of the Selberg zeta-function Z(s; I'; x) for I' € It,, such a formula is
apparently due to Selberg and Huber. There are published proofs in papers by
Huber [21] and Hejhal [19]. For our type of group I' € M, the formula was
published by A. I. Vinogradov and the author in the note [71] (see also [66]).

Chapter 6 is largely concerned with a refinement of the theorem on expansion in
eigenfunctions of the operator A(T'; x) for I' € M, and x € N (") in the aspect
relating to the discrete spectrum of % (I'; x). The first part of §6.1 is an introduction
to the chapter as a whole. In this section we formulate the basic problems of the
theory of the discrete spectrum that are still unsolved. Special attention is accorded
the so-called Roelcke conjecture to the effect that there are infinitely many eigenval-
ues of the discrete spectrum of % (I'; x) for arbitrary I' € It , and x € N (T') (see
[66]). As early as his lectures [50], Selberg indicated that, from a formula of which a
more general version is now known as the Weyl-Selberg formula (see Theorem 4.4.1),
one cannot, in general, extract any information concerning the asymptotic behavior
of the distribution function for the eigenvalues of the discrete spectrum of
A(T; x)(x = 1), except in certain cases of arithmetic groups I' for which one can
explicitly compute the corresponding determinants of the scattering matrices in
terms of the Riemann zeta-function and other special functions of analytic number
theory. And in second part of §6.1 we consider the examples of arithmetic groups
(congruence-subgroups) for which the Weyl-Selberg formula and explicit formulas
for the determinants of the scattering matrices imply Roelcke’s conjecture (and in a
significantly stronger form). More precisely, in Theorem 6.1.2 we establish Weyl’s
formula for the eigenvalues of the discrete spectrum of A (T'; 1) in the case when T is
a congruence-subgroup I';(m) or I',(m); and this result is made even stronger in
Theorem 6.1.1 for a congruence-subgroup I'y(m).

In §6.2 we derive a formula for the Selberg zeta-function of a compact Riemann
surface (Theorem 6.2.3); this formula should be regarded as a transcendental analog
of the Artin-Takagi formula in algebraic number theory. The ground field in this
situation corresponds to an arbitrary normal subgroup of finite index in the
fundamental group of an arbitrary compact Riemann surface of genus no less than
two. Our formula is obtained as a consequence of a more general theory for the
resolvent of the operator A(I'; x), a theory which holds for any group I' € I and
any representation x € R(I') (Theorems 6.2.1 and 6.2.2). Another consequence of
this theory is the Roelcke conjecture. We prove that for every group I' € M, there
exists a subgroup of finite index I', C I' such that the distribution function of the
eigenvalues of the discrete spectrum of % (I';; 1) is unbounded at infinity. We also
give a lower bound with an effective constant for this distribution function in any
sufficiently long finite interval. All of these results were first published in [67].

The basic purpose of §6.3 is to deepen the spectral theory of %(T; x) in the case
of special Fuchsian groups of the first kind I'—groups with nontrivial commensura-
bles. The basic results are 1) construction of a simultaneous spectral decomposition
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for the operator A(T'; x) and the Hecke operator 7(g) (Theorems 6.3.3-6.3.5), and
2) proof of Roelcke’s conjecture for a group I' € M, with large commensurable
(Theorem 6.3.6). These theorems were first published in [64]. Here we shall not
consider the theory in its most general form, but shall limit ourselves to the trivial
representation x, dim V" = 1. At the end of the section we give many examples of
groups with nontrivial commensurables. Among them the set of groups T', occupies
an especially important place. Each group T, € M is a subgroup of index two in a
group generated by reflections relative to the sides of a regular polygon M in the
Lobachevsky plane (see §6.3). We note that the set of all groups commensurable
with the groups I, is rather extensive. In particular, this set contains all arithmetic
subgroups I' € M, as a small subset.

In §6.4 the theory developed in §6.3 is specialized to the case of an arbitrary group
I'" which is commensurable with one of the groups I',,. The basic results are a proof
of the Roelcke conjecture for T (x = 1) (Theorem 6.4.5), a proof of a still stronger
conjecture concerning the distribution function for the eigenvalues of the discrete
spectrum of % (T; 1) (Theorem 6.4.7), and, finally, the demonstration of a connection
between the spectral theory of automorphic functions for an arbitrary group I';, and
the Dirichlet and Neumann boundary value problems on M (Theorems 6.4.2-6.4.4
and 6.4.6). All of these theorems were first published in [61] and [70]. The proof of
the special case of Roelcke’s conjecture for Hecke groups and for x = 1 was given
earlier by Roelcke himself in his dissertation [45].

§6.5 is devoted to a derivation of the trace formula for Dirichlet’s problem from
Theorem 6.4.6, which can be naturally regarded as a variant of the classical Selberg
trace formula. At the beginning of the section we prove a spectral trace formula for
Dirichlet’s problem on an arbitrary regular polygon M. We then consider the theory
separately for compact M (§6.5a)) and noncompact M (§6.5b)). The proof of the
Selberg trace formula for Dirichlet’s problem is based on an investigation of the
relative conjugacy classes {&v}r, , where & is a fixed reflection relative to a side of
M. In §6.52) we pay particular attention to the nondegenerate classes (&, }r
(tr &37 # 0), and in §6.5b) we look at the degenerate classes (tr &y = 0). As a simple
consequence of our Selberg trace formula for Dirichlet’s problem, in both the
compact and noncompact cases we consider Weyl’s asymptotic formula for the
eigenvalues for the operator $(§ — T(&))¥(T,,; 1) in Dirichlet’s problem on M (the
spectrum of this operator is purely discrete); this asymptotic formula is also proved
in §6.5. We conclude the section by showing that the Selberg trace formula for the
von Neumann problem on M is a consequence of the classical trace formula and the
Selberg trace formula for Dirichlet’s problem. The basic results of §6.5 were first
published in the note [65] (see also [60], [62] and [66]).

In §6.6 we define the zeta-function Z,,(s), which we call the Selberg zeta-function
for the Dirichlet boundary value problem on a regular polygon M, and we prove its
basic properties. Among them are meromorphicity and a functional equation. We
give a complete description of all of the zeros and poles of the function. These
results are all obtained from a fundamental representation for the logarithmic
derivative of Z,,(s) (Theorem 6.6.1), which, in turn, is a consequence of the Selberg
trace formula for Dirichlet’s problem in §6.5. The basic theorems of the section were
first published in [65].



