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PREFACE

Biotechnology is a fascinating yet complex area with enormous potential for enhanc-
ing the well-being of mankind and of the environment. For those applications under
development that aim to bring this potential to fruition, biotechnologists and bio-
chemical engineers seek those fundamental principles that provide insight into the
immensely complicated behaviour of the biological and biochemical world and that
can be used for planning experimental research and interpreting results.

In the early 90s, the Steering Committee of the European Science Foundation
(ESF) program on Process Integration in Biochemical Engineering (PIBE) recognized
that thermodynamics represents one set of such fundamental principles, but which had
hitherto only rarely been applied in biotechnology, although quite a substantial body
of knowledge and results had already been published. It therefore decided to develop a
course for advanced graduate students and researchers in order to make the field of the-
modynamics as applied to biotechnology better known, and in order to stimulate its use.

Since then, this graduate course on Thermodynamics in Biochemical Engineering
has taken place six times: 1994 in Toulouse (F), 1996 in Braga (P), 1998 in Nijmegen
(NL), 2000 on Monte Verita above Ascona (CH), 2005 in Miirren (CH) and 2008 in
Biedenkopf (D). Table 1 lists the lecturers who taught these courses. They were orga-
nized and coordinated by L..A.M. van der Wielen and / or U. von Stockar.

In all these years, a considerable amount of course material has accumulated.
The aim of this book is to make this available to a larger audience in an up-dated and
edited format. The book will also serve as a formal basis for future advanced courses on
thermodynamics in biochemical engineering.

The very nature of such an endeavour makes the perfect matching of writing
and presentation styles for the individual chapters impossible. The fact that thermody-
namics has not yet been very widely applied in biotechnology, and that consequently
many biotechnologists are unfamiliar with thermodynamics, made it necessary to
include quite a number of chapters intended as introductions to particular topics and
written in a pedagogical manner. At the same time, a growing number of research
projects on the application of thermodynamics to biochemical engineering are carried
out and published. In an attempt to inform the reader on the state of art in this field,
other chapters represent reviews of cutting edge research and results.

For the courses, a large number of problems and assignments for the partici-
pants have been developed as well. Some of these are included in certain chapters as
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Table 1 List of speakers who have lectured in one or several advanced courses on
Thermodynamics in Biochemical Engineering.

Lecturers Affiliation Country

J. de Swaan Arons Delft University of Technology (TUD) The Netherlands

F. Franks Pafra Ltd, Cambridge United Kingdom

E. Gnaiger University Hospital Austria

P. J. Halling University of Strathclyde, Glasgow United Kingdom

C. A. Haynes University of British Columbia, Vancouver Canada

J. J. Heijnen Delft University of Technology (TUD) The Netherlands

J. Keller Universitit Siegen Germany

T. Maskow Umwelt Forschungszentrum (UFZ) Leipzig ~ Germany

W. NOrde Wageningen University (WUR) The Netherlands

J. M. Prausnitz University of California, Berkeley USA

T. Randolph University of Colorado, Boulder USA

S. Rudolph Delft University of Technology (TUD) The Netherlands

A.J.J. Straathof Delft University of Technology (TUD) The Netherlands

L. A. M. van der Wielen  Delft University of Technology (TUD) The Netherlands

U. von Stockar Swiss Federal Institute of Technology Switzerland
Lausanne

H. Wennerstrom University of Lund Sweden

sample calculations or examples, and we are convinced that the reader will appreciate
these as highly valuable help in understanding difficult topics. A larger number of
assignments and worked results, however, remain in our files. Space restrictions for
this current volume do not allow us to publish the exercises together in a single vol-
ume, so in order to help the interested reader a selection of these will be made avail-
able as Mathcad files in the summer of 2013 (information concerning the availability
of this supplementary material can be found at the publisher’s website: http://www.
epflpress.org, on the page dedicated to this book). These very same exercises will be
elaborated and edited in book form at some later date.

Many people have contributed toward the present work. The authors are
indebted to a large number of graduate students, postdocs and secretaries who have
helped us to organize, prepare and teach the various international courses. We acknowl-
edge DECHEMA in Frankfurt for having organized the last course in Biedenkopf.
The authors would like to thank those colleagues who have taken the time to read and
review the manuscripts. We are grateful to Lars Regestein, RWTH Aachen, for having
advised us on the assignment problems after having conducted a critical evaluation
of the full set.

Luuk van der Wielen Urs von Stockar
Course coordinator Editor, Course coordinator
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