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Preface

A differential equation is an integral part of the vast field of mathematics. It can be defined as a mathematical
equation that relates some function of one or more variables with its derivatives. The mathematical theory of
differential equations can be said to have developed together with the sciences where the equations had derived
from and where the results found application or were needed. Differential equations arise whenever a deterministic
relation concerning some constantly changing quantities and their rates of change in space and time is known or
hypothesized. Such relations are extremely familiar and therefore differential equations play a fundamental role in
many disciplines like physics, engineering, biology and economics. The mathematical theory behind the equations
can also be viewed as a uniting principle behind various phenomena. The theory of conduction of heat is one of
the examples of a phenomena governed by a differential equation, that is, the heat equation. One will find that
there are many processes that, while seemingly different, are described by differential equations. Diverse problems,
sometimes stemming from quite distinct scientific fields, may give rise to identical differential equations. Many
fundamental laws of physics and chemistry can be formulated as differential equations. Even in fields such as
biology and economics, differential equations can be used to represent the behavior of complex systems. Thus the
arena of differential equations can be said to be quite a prolific one.

This book is an attempt to compile and collate all available research on the subject of differential equations under
one umbrella. I am grateful to those who put their hard work, effort and expertise into these researches as well
as those who were supportive in this endeavour. I also wish to thank my publisher for giving me this unmatched
opportunity. [ am extremely thankful to all the contributing authors who took out their precious time to interact
with me and helped me understand their research perspectives in a better manner for the best output. Lastly, 1
wish to thank my family for their constant support.

Editor
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An Extension of the Optimal Homotopy Asymptotic Method to
Coupled Schrodinger-KdV Equation
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Correspondence should be addressed to Hakeem Ullah; hakeemullahl@gmail.com
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We consider the approximate solution of the coupled Schrodinger-KdV equation by using the extended optimal homotopy
asymptotic method (OHAM). We obtained the extended OHAM solution of the problem and compared with the exact, variational
iteration method (VIM) and homotopy perturbation method (HPM) solutions. The obtained solution shows that extended OHAM
is effective, simpler, easier, and explicit and gives a suitable way to control the convergence of the approximate solution.

1. Introduction

The nonlinear Schrodinger equations are of great interest
due to their numerous applications in physical phenomena.
The coupled Schrédinger-KdV equations are extensively used
to model nonlinear dynamics of one-dimensional Langmuir
and ion acoustic waves in the system of coordinates moving
at the speed of ion acoustic. This problem remains under
consideration from many years and has been investigated
by many researchers. Many authors have investigated the
nonlinear Schrédinger-KdV equation by various techniques
such as the following: Wang [1] used finite difference method,
Kiigtikarslan [2] used HPM, Bai and Zhang [3] used quadratic
B-Spline finite element method, Fan and Hon [4] used
extended tanh method, Kaya and El-Sayed [5] used adomian
decomposition method (ADM), Doosthoseini and Shahmo-
hamadi [6] used VIM, Alomari et al. [7] used homotopy
analysis method (HAM), Qing et al. [8] used element free
Galerkin method (EFG), and Golbabai and Safdari-Vaighani
[9] used meshless method using RBF collocation scheme. The
perturbation methods like HPM required a small parameter
and are difficult to determine.

Recently, Marinca et al. introduced OHAM [10-14] for the
solution of nonlinear problems which made the perturbation
methods independent of the assumption of small parameters
and huge computational work.

The motivation of this paper is to extend the OHAM
formulation for a system of three partial differential equations
and to apply the extended OHAM formulation to coupled
nonlinear Schrédinger-KdV equation. In [15-17] OHAM has
been proved to be valuable for obtaining an approximate
solution of ordinary/partial differential equations (O/PDEs).
Before, this system of nonlinear partial differential equations
(NPDEs) was not solved by OHAM. We have proved that
extended OHAM is useful and reliable for NPDEs, showing
its validity and great potential for the solution of transient
physical phenomenon in science and engineering.

In the succeeding section, the basic idea of extended
OHAM is formulated for the solution of system NPDEs. The
effectiveness and efficiency of OHAM are shown in Section 3.

2. Extended Mathematical
Formulation of OHAM

Consider a system of three partial differential equations:
gy (f (x,1) +5, (x,1) =0,
gy (g (x,1)) +5,(x,t) =0,
5 (h(x,t))+5,(x,t) =0,
x €8}



(1)

where o, ,, 4 are differential operators, f(x,t),g(x,t),
h(x,t) are unknown functions, x and t denote spatial and
temporal independent variables, respectively, I' is the bound-
ary of Q, and s,(x,t),s,(x,1),s;5(x,t) are known analytic
functions. &, &,, o can be divided into two parts:

'ﬂl=g]+‘/‘/l’
dy=Zr+ Ny (2)
Ay=Ly+ N,

Z, &5, &5 contain the linear parts while 4, /,, ;5 con-
tain the nonlinear parts of the system of partial differential
equations.

According to OHAM, we construct

a(xt;p): QAx[0,1] — R,
B(x.t:p) : yx[0,1] — R, (3)
y(x,t;p): ¢ x[0,1] — R,

satisfying the following homotopies:

H (a(x.t; p), p)
=(1-p){Zi (a(xt;p)) +5, (x 1)}
- H, (p){e, (a(x.;p)) + 5, (x,1)} = 0,
H (B(x.t: p), p)
= (1-p){Z, (B(x.t;p)) + 5, (x, 1)} (4)
- Hy (p){e, (B(x:t; p)) + 5, (x;1)} = 0,
H(y(x.tp). p)
=(1-p){Z; (v (x:t: p)) + 53 (x, 1)}
- Hy (p) {3 (y(x.t:p)) + 53 (x,1)} = 0,

where the auxiliary functions H,(p), H,(p), Hz(p) are
nonzero for p#0 and H,(0) = 0,H,(0) = 0,H;(0) = 0.

Essential Concepts of Differential Equations

Equation (4) is called optimal homotopy equation. Clearly,
we have

p=0= H(a(xt0),0) = Z, (a(xt0) +s, (x,t) =0,
p=0= H(B(x,10),0) = Z, (B(x,£0)) + s, (x,t) = 0,
p=0= H(y(x,1;0),0) = Z;(y(x,1;0)) + 55 (x,1) = 0,
p=1=H(a(x,t;1),1)
=H, () {d, (a(x,t; p)) +s; (x,1)} =0,
p=1=H(B(xt1),1)
=H, (1) {5 (B (x.£; p)) + 5, (x, 1)} = 0,
p=1=H((y(xtl),1)

= Hy (1) {e5 (y(x,t;5 p)) + 55 (x, 1)} = 0.

(5)
Obviously, when p = 0 and p = 1 we obtain
a(x,t0) = fy(xt),B(xt;0)
= go (%), y (x,£;0) = hy (x, 1),
(6)

a(x,t;1) = f(xt),B(xt1)
=g(x,t),y(x,t:1) = h(x,t),

respectively. When p varies from 0 to 1, the
solution «(x,t; p), B(x,t; p),y(x,t; p) approaches from
folx,1), go(x,1), hy(x,t) to f(x,t), g(x,t), h(x,t), where
folx,1), go(x, 1), hy(x, t) are obtained from (4) for p = 0:

9
By (fo: %) =0,

o
@2 (go»%) =0, (7)

1%3 (hO’ aa_’:lx(')) = O.

We choose auxiliary functions H, (p), H,(p), H;(p) in the
form

Z1(fo (x1)) + 51 (x,1) = 0,
Z, (g (x,1)) + 55 (x,1) = 0,

5?3 (hO (x) t)) + 83 (xa t) =0,

H, (p) = pCy, + P2C12 + P3C13 + o4 P Copps
H, (p) = pCy; + chzz + P3C23 +-oo4 pCyy, (8)
H; (p) = pCy, + P2C32 + P3C33 + oot P Copye

To get the approximate solutions, we expand

alx,t; p,Cyy), Blx, t; p, Cyy), y(x, 15 p, Cy;) by Taylor’s series
about p in the following manner:

a(xtp,Cy) = folxt) + ka (x,t:Cy;) pk,

k=1

B(x.t;p.Cy) = go(x,t) + Z.‘]I (x.t:Cy) Pk’ (9)
121

y (x) t; P) C3i) = hO (x’ t) + Zhn (x’ t; C3i) pk’
n=1
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wherek = | = n =i = 1,2,3,4,.... Now substituting (8)-
(9) into (4) and equating the coefficient of like powers of p,
we obtain zeroth order system, given by (7) and the first and
second order systems given by (10)-(11), respectively, and the
general governing equations for u;(x, t) are given by (12):

Z,(fi(xt) = Z, (fo (x1))
=C, (2, (fo (x. 1)) + ', (fo (x,1)))

a
@ (5 ge)=0
Z5(91 (1)) = Z5(go (x:1))
=Cy (£, (g0 (x,1)) + 5 (g (x,1))), (10)

0
B, (gl»ggxl“)

33 (hl (x’ t)) - 33 (hO (x! t))

0

Il

=Cyy (25 (hy (x,1)) + 5 (hy (x,1))) s
oh,
B, (h] S ) =0
Z (fL,(x0) =2 (fi (x1)

=Cp (Z1 (i) + H, (fo (%, 1), fi (x,1)))
+Cpp (Z) (fo (6, 1)) + ', (fo (%)),

B, <f2, afz) 0,

%, (92 (%)) = Z5 (g, (x,1))
=Cy (Z3 (g1 (.0) + 45 (9o (6, 1), gy (x.1)))
+Cy (£, (go (x, 1)) + N, (go (x,1))),
(572 w6,
Ly (1, (6.1) = 5 (hy (x,1))
= Cy; (&5 (hy (x,1)) + N5 (hy (x, 1) , by (x,1)))

oy

+Cy (Z5 (hy (%, 1)) + V3 (hy (x,1)))

2y (1 22) -

Z (fi(x0) -2 (f2(x1)
=Cy (Z) (f2 (1)
+1 (fo (), fi (x5,0), £ (x,1)))
+Cp (Z1 (fL . 0) + 41 (fo (1), fi (x.1)))
+Ci3 (Z1 (fo (6 1) + A, (fo (1))

B, (f3 af3) 0,

Z,(gs (x:1)) = £, (g, (1))
=Cy (Z3(g2 (% 1))
+5(go (x,1), 9, (x,1), g, (x,1)))
+Cpy (Z5 (g1 (1) + A, (go (x:1) 5 g, (x,1)))
+Co3 (2, (g0 (1) + A5 (go (1)),

0
B, (93*%) =0,

L5 (hy (x,1)) = £ (hy (x,1))
=Cy (&5 (hy (1))
+ 5 (hy (x,t) by (x,8) , By (x, 1))
+Cyy (&5 (hy (x,1) + 5 (hy (x,1) . by (x,1)))
+Cy3 (Z5 (hy (x,1)) + A5 (g (x,1))),

oh
B, (hs, x’) =0;
(12)
2 (fi 1) = 2, (fiey (x,1))

k
= Z,Cli [ (fi-i (1)

1 (fo (1), fi (60, fii (x1))]

k=2;3;...;
o (1) o

2, (g (1)) = Z5 (gpy (:1))

M=

= ) Cy [32 (gk_i (x, t))

[
-

N3 (go (1), 91 (%) 5. gy (x,D)]
k=285 i

%)
-%z<9k: gk) 0,

Zs (e (1) = Z5 (I (x,1))

+ 3 (hg (x,1) by (%) 5.0y g (x,1))]
k=28,

(13)



It has been observed that the convergence of the series (9)
depends upon the auxiliary constants C,;, C;,,C3,...Cy,
Cy,Cy35...Cy,Cs5, Cyg, .. .. If it s convergent at p = 1, one
has

« (5,5Cy) = fo (6 + ) fi (x5Cy,),

k=1

B* (x.t:Cy) = gy (,1) + Zgl (%.t:Cy),
121 (14)

i=12,...m

y* (x, t; C_g,') = h() (x;t)+ zhn (x’ t;CSi) :

nx1

Substituting (14) into (1.1), the following expression for
residuals results:

R, (€)= &, (&” (0 Cy))

+5, (6 t)+ A4, (a" (x,,Cy;)),
R, (x,5;Cy) = Z, (B (%, 1:Cy))

+55(x,t) + A (B (x.1Cy)),
Ry (x,1:C5) = Z5(y" (x.1:Cy)))

+5 (6 + 45y (x,1Cy)).

(15)

If Ri(x,t;Cy;) = 0,Ry(x,15Cy;) = 0,Ry(x,1;Cy;) = 0
then a”(x,t;Cy;), B*(x,t;Cy), and y*(x,t;C;;) will be the
exact solutions of the problem. Generally it does not happen,
especially in nonlinear problems.

For the computation of auxiliary constants, Cy;, C,;, C5;,
i = 1,2,...,m, there are different methods like Galerkin’s
method, Ritz method, least squares method, and collocation
method. One can apply the method of least squares as follows:

1
11 (Cy) = L J-Q R} (x,1C,;) dx dt,

t
1 (Cy) = L J R; (x,t;Cy;) dx dt, (16)
v
t
J:(C3) = L L R} (x,t;Cy;) dx dt,
o, _ o, _ 0O, _0L _0h _ o
aCy 0Cy, dCy,  0Cy  0Cy aC,,,
o _ o _ s
0Cy;;  0Cs,y aC,,
(17)

The mth order approximate solution can be obtained by
these constants so-obtained. The more general auxiliary func-
tions H, (p), H,(p), H5(p) are useful for convergence, which
depends upon constants C,;,C,,,C;;,C5,,C5,,Cs,, ..., can
be optimally identified by (17), and is useful in error mini-
mization.

Essential Concepts of Differential Equations

3. Application of Extended OHAM to Coupled
Schrodinger-KdV Equation

To demonstrate the effectiveness of the extended OHAM for
coupled Schrédinger- KAV equation taken from [6], we have

B (x1)  n(x1)

-n(et)p(xt)=0, (18)

ot 0x?
on(x,t) 0B (x,t) -
%t o2 + B(x,t) u(x,t) =0,
ou (x,t) ou (x,t) 33;4 (x,1) (19)
TR el Pank
- Op (x,1) on(x,t)
2B (x,t) E 2n(x,t) Fra 0,
with boundary conditions
B (x,0) = cos (x),
n(x,0) = sin (x), (20)
3
u(x,0) = 7

The exact solution of (19) for-3 < x <3and0<t < 1is
given by

B(x,t) =cos(x+ i),

. t
n(x,t) = sin (x + Z), (21)
u(x,t) = %

Applying the extended OHAM technique discussed in
Section 2,

(1-p) %
- H,(p) [aﬁg’ LB azﬂaif’ D _nx, t)#(x,t)] =0,
(1-p) 20
- H, (p) [a”g:’ 2 azg’(;’ 2 B(x,t) (x,t)} =0,
(1-p) w
- H, (p) [a“ é’: L, a“éﬁ’ ) 33%55:, ]
2B () LD oy () X ;i”)]

(22)
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TaBLE 1: Absolute error of OHAM solution f(x,t) corresponding to the exact solution.

x t=0.5 t=02 t=0.1 t =001 t =0.001
-3 437771 x 1073 8.5962 x 107* 3.51139x 107 6.29194 x 107° 6.57034 x 10™°
-2 1.83163 x 1072 8.0058 x 10~° 4.12582x 107 4.24051 x 107* 4.25219% 107°
-1 241704 x 107 8.5651 x 10~ 4.10724 x 1073 3.95312x 107 3.93790 x 10~°
0 7.80233 x 107° 1.2497 x 1073 3.12484 x 107 3.12500 x 107 3.12500 x 107
1 1.57391 x 1072 7.2147 x 107 3.76957 x 107 3.91935x 10~ 3.93452x 107°
2 2.48101 x 1072 9.0460 x 107> 4.38590 x 107> 426652 x 107* 4.25479 x 107°
3 1.10708 x 10~ 2.5600 x 1073 9.69852 x 107* 6.91069 x 107" 6.63222 x 107°
TaBLE 2: Absolute error of OHAM solution #(x, t) corresponding to the exact solution.

x t=05 t=02 t=0.1 t=0.01 t =0.001

-3 1.33126 x 107* 1.6026 x 107 2.83128 x 107° 1.39272 x 107° 1.79217 x 1077
-2 7.19141 x 107 1.12962 x 107° 2.77505 x 107* 2.07074 x 107° 4.87727x 1078
=] 6.4398 x 107 1.06041 x 107 2.71500 x 107* 3.63037 x 107° 1.26513 x 1077
0 232524 x 107 1.62664 x 10~° 1.59445 x 10~ 1.85225 x 107° 1.85483 x 1077
1 6.69107 x 107> 1.04283 x 10~° 2.54331 % 1074 1.62882 x 107° 7.39210 x 10°*
2 6.99788 x 10~ 1.14315x 1072 2.90776 x 107* 3.61236 x 107° 1.05604 x 1077
3 8.70868 x 107* 1.92467 x 107 5.98826 x 10~° 2.27472 x 107¢ 1.88037 x 1077

FIGURE 2: 3D, exact solution of B(x,t) at¢t = 0.1.

FIGURE 4: 3D, exact solution of n(x, t) att = 0.1.



TasLE 3: Comparison of u(x, t) solutions obtained by OHAM to the

exact solution.

X OHAM solution Exact solution
-3 3/4 3/4
-2 3/4 3/4
-1 3/4 3/4
0 3/4 3/4
1 3/4 3/4
2 3/4 3/4
3 3/4 3/4

FIGURE 5: 3D, OHAM solution of u(x,t) at t = 0.1.

We consider
B=By+pB+ PP
W=t + i+ Pty
Hy (p) = pCyy + p'Cua,

0=t + pHy + Pl

H, (p) = pCy + chzz’ H; (p) = pCy; + P2C32-

Zeroth Order System. Consider

Po_y I

Opy
ot ot x -0

=0,
ot

with initial conditions

By (x,0) = cos (x),

o (x,0) = sin(x),

3
,0) = =,
Ho (x,0) P

Its solution is
Bo (x,t) = cos (x),

o (x,t) = sin (x),

3
) = —.,
to (x5 1) 1

(23)

(24)

(25)

(26)

Essential Concepts of Differential Equations

FIGURE 7: 3D, residual of B(x,t) att = 0.1.

First Order System. Consider

%x’—t) = (1+C11)% = Cutopy = Cpy %’
w =(1+Cy) % + Cy1Bo to +C2,%,
w = (1+C31)% (27)
-2Cy (ﬁo% + ’70% - 3/"0%_[,;0)
+Cy %}?
with
Bi(x,00=0, 7 (x,00=0, 4 (x,0)=0. (28)
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0.5F

|
w
|
1)
|
-
X o
-
%)
S

1O F T =

0.5

t 00

-0.5}
:

1.0 ks
-3 -2 -1 0 1 2 3

X

FIGURE 11: 2D, exact solution of B(x,t) att = 0.1.

FIGURE 9: 3D, residual of p(x,t)att = 0.1.
O (x:1) _ [(1 +Cy) oM _ 2C,,
ot =7 ot
Its solution is X (ﬂl% + ﬁo%ﬁ + ’71% + ryo%
X X
G
By (x,t,Cyy) = —tsinx, _3, % _4 %)
4 3["1 ox Ho Ox
C 29
 (5,Car) =~ con, v 20 (B2 112 32
( 2 \Pog, TTo B Ho B0
t (x,1,Cy) = 0.
+C 1% + Cua}—#‘) +C, %]
Second Order System. Consider *ox ox? ' ox?
(30)
ap, (x,t) 5)
ﬁat_ = [(1 +Cyy) ait] = Cy (Mmpo + Moth) with
9’ o ,0) = 0, ,0)=0 0)=0. (3l
+Cy; (By — Moto) — Ci2 % -Cyy WU;J , B> (x,0) 1 (%0) =0, #2 (x,0) (1)
B, (. 1) 3 The solution of second order system is
X,
'hT = [(1 +Cy) % + Cyy (Bito + Pothr)

1
B, (x,t,Cy,,Cy3) = = (8C,,tsinx + 8C7 tsin x
OBy Oty
+Caa (110 + Boto) + Ca1 Ox2 + 0y oxt |’ +8C,t sin x — tzC’“C21 cosx),
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1.0 T T T T =
14 F
[ 12 F
0.5 | ]
1.0
08 F
t 00 !
06 F
-, 1 04 F
02 F
-1.0 b . ; ; . ] 0.0 E .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
X

FIGURE 14: 2D, OHAM solution of p(x,t) att = 0.1.

1.4
1‘0_ i Tl bt T S Sl T T L= 1-2_
1.0
05Ff ] ¢ 08
0.6 E
t 00 04f
0.2}
-0.5F 1 0.0 b L . L
=3 -2 -1 0 1 2
X
—10 CL i e Wy n
-3 -2 -1 0 1 2 3 FIGURE 15: 2D, exact solution of p(x,t) att = 0.1.

FIGURE 13: 2D, exact solution of #(x, t) at t = 0.1.
1(x,1,Cy,Cyy)

1
= sin (x) — ZCZItsin (x)
1 1
1, (%,£,C51,Cyp) = — o (8C21 cos x + 8C},t cos x ~5 (8C21 cos x + 8C5,t cos x
+C“C2,t2 sin x + C,t cos x) ; +C“C2,t2 sin x + C,,t cos x) 3

(C21C311‘2 cos (2x)

NN

(C21C31 t* cos (2x) — C11C3lt2 cos (2x)) :
(32)

3
p(x,t,Cy) = 2 *

|

ty (%,1,Cyy) =

_C”C31t2 Ccos (2x)) .
(33)
For the calculation of the constants C,,, C,,, Cs;, C5,, and

C;, using (33) in (19) and applying the method of least square
mentioned in (16)-(17) by taking, we get

Adding (26), (29), and (32), we obtain

B(x,t,C,,Cyy) Cy; = —3.041182429907255 x 1074,

Cy, = -1.1871110474593864
= cos (x) + iCntsin (x) .

1 C,, = —3.041182429907255 x 1074, (34)
5 2 -
MY (8Cutsinx +8C,t sinx C,, = —0.999258572471839,

+8C),t sin x — °C;Cy, cos x), Cy; = —8.101774168020832 x 10™ .



