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Preface

Riemannian geometry is characterized, and research is oriented towards and shaped
by concepts (geodesics, connections, curvature, ...) and objectives, in particular to
understand certain classes of (compact) Riemannian manifolds defined by curvature
conditions (constant or positive or negative curvature, ...). By way of contrast,
geometric analysis is a perhaps somewhat less systematic collection of techniques, for
solving extremal problems naturally arising in geometry and for investigating and
characterizing their solutions. It turns out that the two fields complement each other
very well; geometric analysis offers tools for solving difficult problems in geometry, and
Riemannian geometry stimulates progress in geometric analysis by setting ambitious
goals.

It is the aim of this book to be a systematic and comprehensive introduction to
Riemannian geometry and a representative introduction to the methods of geometric
analysis. It attempts a synthesis of geometric and analytic methods in the study of
Riemannian manifolds.

The present work is the sixth edition of my textbook on Riemannian geometry
and geometric analysis. It has developed on the basis of several graduate courses
I taught at the Ruhr-University Bochum and the University of Leipzig. The main
new feature of the present edition is a systematic presentation of the spectrum of the
Laplace operator and its relation with the geometry of the underlying Riemannian
manifold. Naturally, I have also included several smaller additions and minor
corrections (for which I am grateful to several readers). Moreover, the organization
of the chapters has been systematically rearranged.

Let me now briefly describe the contents:

In the first chapter, we introduce the basic geometric concepts of Riemannian
geometry. We then begin the treatment of one of the fundamental objects and tools
of Riemannian geometry, the so-called geodesics which are defined as locally shortest
curves. Geodesics will reappear prominently in several later chapters. Here, we
treat the existence of geodesics with two different methods, both of which are quite
important in geometric analysis in general. Thus, the reader has the opportunity to
understand the basic ideas of those methods in an elementary context before moving
on to more difficult versions in subsequent chapters. The first method is based on the
local existence and uniqueness of geodesics and will be applied again in Chapter 9
for two-dimensional harmonic maps. The second method is the heat flow method
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that gained prominence through Perelman’s solution of the Poincaré conjecture by
the Ricci flow method.

The second chapter introduces another fundamental concept, the one of a vector
bundle. Besides the most basic one, the tangent bundle of a Riemannian manifold,
many other vector bundles will appear in this book. The structure group of a vector
bundle is a Lie group, and we shall therefore use this opportunity to also discuss Lie
groups and their infinitesimal versions, the Lie algebras.

The third chapter then introduces basic concepts and methods from analysis.
In particular, the Laplace-Beltrami operator is a fundamental object in Riemannian
geometry. We show the essential properties of its spectrum and discuss relationships
with the underlying geometry. We then turn to the operation of the Laplace
operator on differential forms. We introduce de Rham cohomology groups and the
essential tools from elliptic PDE for treating these groups. We prove the existence
of harmonic forms representing cohomology classes both by a variational method,
thereby introducing another of the basic schemes of geometric analysis, and by the
heat flow method. The linear setting of cohomology classes allows us to understand
some key ideas without the technical difficulties of nonlinear problems. We also discuss
the spectrum of the Laplacian on differential forms. The important observation that
the spectra for forms of different degrees are systematically related I learned from
Johannes Rauh, whom I should like to thank for this.

The fourth chapter begins with fundamental geometric concepts. It treats the
general theory of connections and curvature. We also introduce important functionals
like the Yang-Mills functional and its properties, as well as minimal submanifolds. The
Bochner method is applied to the first eigenvalue of the Laplacian and harmonic 1-
forms on manifolds of positive Ricci curvature, as an example of the interplay between
geometry and analysis. We also describe the method of Li and Yau for obtaining
eigenvalue estimates through gradient bounds for eigenfunctions.

In the fifth chapter, we introduce Jacobi fields, prove the Rauch comparison
theorems for Jacobi fields and apply these results to geodesics. We also develop the
global geometry of spaces of nonpositive curvature.

These first five chapters treat the more elementary and basic aspects of the
subject. Their results will be used in the remaining, more advanced chapters.

The sixth chapter treats Kéahler manifolds and symmetric spaces as important
examples of Riemannian manifolds in detail.

The seventh chapter is devoted to Morse theory and Floer homology.

In the eighth chapter, we treat harmonic maps between Riemannian manifolds.
We prove several existence theorems and apply them to Riemannian geometry. The
treatment uses an abstract approach based on convexity that should bring out the
fundamental structures. We also display a representative sample of techniques from
geometric analysis.

In the ninth chapter, we treat harmonic maps from Riemann surfaces. We
encounter here the phenomenon of conformal invariance which makes this two-
dimensional case distinctively different from the higher dimensional one.

Riemannian geometry has become the mathematical language of theoretical
physics, whereas the rigorous demonstration of many results in theoretical physics
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requires deep tools from nonlinear analysis. Therefore, the tenth chapter explores
some connections between physics, geometry and analysis. It treats variational
problems from quantum field theory, in particular the Ginzburg-Landau and Seiberg—
Witten equations, and a mathematical version of the nonlinear supersymmetric sigma
model. In mathematical terms, the two-dimensional harmonic map problem is coupled
with a Dirac field. The background material on spin geometry and Dirac operators is
already developed in earlier chapters. The connections between geometry and physics
are developed in more generality in my monograph [164].

A guiding principle for this textbook was that the material in the main body
should be self-contained. The essential exception is that we use material about
Sobolev spaces and linear elliptic and parabolic PDEs without giving proofs. This
material is collected in Appendix A. Appendix B collects some elementary topological
results about fundamental groups and covering spaces.

Also, in certain places in Chapter 7, we do not present all technical details, but
rather explain some points in a more informal manner, in order to keep the size of
that chapter within reasonable limits and not to lose the patience of the readers.

We employ both coordinate-free intrinsic notations and tensor notations dep-
ending on local coordinates. We usually develop a concept in both notations while we
sometimes alternate in the proofs. Besides the fact that i am not a methodological
purist, reasons for often preferring the tensor calculus to the more elegant and concise
intrinsic one are the following. For the analytic aspects, one often has to employ
results about (elliptic) partial differential equations (PDEs), and in order to check
that the relevant assumptions like ellipticity hold and in order to make contact with
the notations usually employed in PDE theory, one has to write down the differential
equation in local coordinates. Also, manifold and important connections have been
established between theoretical physics and our subject. In the physical literature,
usually the tensor notation is employed, and therefore, familiarity with that notation
is necessary for exploring those connections that have been found to be stimulating
for the development of mathematics, or promise to be so in the future.

As appendices to most of the sections, we have written paragraphs with the title
“Perspectives”. The aim of those paragraphs is to place the material in a broader
context and explain further results and directions without detailed proofs. The
material of these Perspectives will not be used in the main body of the text. Similarly,
after Chapter 5, we have inserted a section entitled “A short survey on curvature and
topology” that presents an account of many global results of Riemannian geometry
not covered in the main text. At the end of each chapter, some exercises for the
reader are given. We trust the reader to be of sufficient perspicacity to understand
our system of numbering and cross-references without further explanation.

1 thank Miroslav Bacak and the copy editor for valuable corrections. I am
grateful to the European Research Council for supporting my work with the Advanced
Grant FP7-267087.

The development of the mathematical subject of Geometric Analysis, namely
the investigation of analytical questions arising from a geometric context and in turn
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the application of analytical techniques to geometric problems, is to a large extent
due to the work and the influence of Shing-Tung Yau. This book, like its previous
editions, is dedicated to him.

Jiirgen Jost
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Chapter 1

Riemannian Manifolds

1.1 Manifolds and Differentiable Manifolds

A topological space is a set M together with a family O of subsets of M satisfying the
following properties:

(i) 21,0 €0=>M N e,
(ii) for any index set A : (Ra)aca CO = Uyes Qa €0,
(iii) O,M € O.

. The sets from O are called open. A topological space is called Hausdorff if for
any two distinct points p;, pa € M there exist open sets 3, € O with p; € Qy,p2 €
Q9,0; N, = 0. A covering (24 )aca (A an arbitrary index set) is called locally finite
if each p € M has a neighborhood that intersects only finitely many Q.. M is called
paracompact if any open covering possesses a locally finite refinement. This means
that for any open covering (€22 )aca there exists a locally finite open covering (23)ses
with

VBeB3a€ A: Q) C Q.

The condition of paracompactness ensures the existence of an important technical
tool, the so-called partition of unity, see Lemma 1.1.1 below.

A map between topological spaces is called continuous if the preimage of any
. open set is again open. A bijective map which is continuous in both directions is
called a homeomorphism.

J. Jost, Riemannian Geometry and Geometric Analysis, Universitext,
DOI 10.1007/978-3-642-21298-7_1, (©) Springer-Verlag Berlin Heidelberg 2011



2 Chapter 1 Riemannian Manifolds

Definition 1.1.1. A manifold M of dimension d is a connected paracompact
Hausdorff space for which every point has a neighborhood U that is homeomorphic
to an open subset Q of R%. Such a homeomorphism

z:U—-Q

is called a (coordinate) chart.

An atlas is a family {Ua,zq} of charts for which the U, constitute an open
covering of M.

Remarks.

1. A point p € U, is determined by z,(p); hence it is often identified with z,(p).
Often, also the index a is omitted, and the components of z(p) € R? are called
local coordinates of p.

2. It is customary to write the Euclidean coordinates of R as
z=(z...,z%), (1.1.1)

and these then are considered as local coordinates on our manifold M when
z:U — Qis a chart.

As we shall see, local coordinates yield a systematic method for locally
representing a manifold in such a manner that computations can be carried out.
We shall now describe a concept that will allow us to utilize the framework of linear
algebra for local computations as will be explored in §1.2 and beyond.

Definition 1.1.2. An atlas {Uy,, %} on a manifold is called differentiable if all chart
transitions
zgo :L‘;l 1 xa(Ua NUB) — z5(Us NUp)

are differentiable of class C*™ (in case U, NUs # 0). A maximal differentiable atlas
is called a differentiable structure, and a differentiable manifold of dimension d is a
manifold of dimension d with a differentiable structure. From now on, all atlases are
supposed to be differentiable. Two atlases are called compatible if their union is again
an atlas. In general, a chart is called compatible with an atlas if adding the chart to
the atlas yields again an atlas. An atlas is called maximal if any chart compatible
with it is already contained in it.

Remarks.

1. One could also require a weaker differentiability property than C'*°, for instance
C*¥, i.e., that all chart transitions be k times continuously differentiable, for
some k € N. O™ is convenient as one never needs to worry about the order
of differentiability. The spaces C* for k € N, on the other hand, offer the
advantage of being Banach spaces.



