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Preface

Carbon nanotubes and graphene sheets exhibit unique and extraordinary elec-
trical, mechanical, and thermal properties rendering them attractive fillers for
reinforcing polymers to form functional and structural composite materials of
high performance. The performance of the polymer nanocomposites relies on
the inherent properties of carbonaceous nanofillers, and on optimizing the dis-
persion, interfacial interaction, and nanoscale exfoliation of those fillers within
the polymer matrix. Designing smart polymer nanocomposite materials with the
appropriate processing-structure-property relationships for biomedical, electronic,
electromagnetic interference shielding, and chemical sensing as well as struc-
tural engineering applications is challenging. In recent years, one-dimensional
carbon nanotubes have been incorporated into various types of polymeric materials
for achieving these purposes. However, the high cost, tedious purification and
high tendency of agglomeration of carbon nanotubes hurdle the development of
nanotube/polymer composites in engineering applications. The recent successful
synthesis of two-dimensional graphene layers from graphite oxide via chemical and
thermal reduction techniques has sparked enormous interest in their properties,
functions, and applications. The low cost and ease of fabrication of graphene
offer tremendous opportunities for chemists and materials scientists to explore
and develop novel graphene/polymer nanocomposites with excellent biological,
mechanical, and physical properties. This book focuses exclusively on the latest
research related to the synthesis and property characterization of one- and two
dimensional carbonaceous nanomaterials and their polymer nanocomposites, and
addresses potential applications of these materials to bipolar plates of fuel cells,
electrocatalysts, human orthopedic implants and scaffolds, electromagnetic in-
terference shielding materials, and gas-, pressure- and temperature sensors. This
book serves as a valuable and informative reference to scientists, engineers, medical
technologists, and practitioners engaged in the teaching, research, development,
and use of functional polymer composites with carbonaceous nanofillers.

Sie Chin Tjong
CEng CSci FIMMM
City University of Hong Kong
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1
Introduction

1.1
Graphene-Based Nanomaterials

Carbon exists in many forms including buckyballs, diamond, nanotubes, and
graphite. It is naturally abundant as coal and natural graphite. Two-dimensional
(2D) graphene, a new class of carbon nanostructure, has attracted tremendous
attention in recent years since the successful isolation of graphene by microme-
chanical cleavage of highly oriented pyrolytic graphite (HOPG) [1, 2]. Graphene
is a single atomic layer of sp? hybridized carbon atoms covalently bonded in a
honeycomb lattice. It is a building block for carbon materials of different dimen-
sionalities, including 0D buckyballs, 1D nanotubes, and 3D graphite (Figure 1.1).
It shows great potential for technological applications in several areas such as
electronics, optoelectronics, nanocomposites, sensors, batteries, and so on [3-7].
Graphene sheets stack together to form graphite with an interlayer spacing of
0.34nm, showing strong in-plane bonding but weak van der Waals interaction
between layers. By virtue of this layered structure, large efforts have been tempted
to exfoliate graphite into individual atomic layers. It is difficult to obtain a fully
separated sheet layer of graphene because freestanding atomic layer is widely
considered to be thermodynamically unstable. A lack of an effective approach to
exfoliate graphite into individual, pure graphene sheet in large quantities remains
a major obstacle to exploiting its full potential applications.

In 2004, Geim and coworkers of the Manchester University (United Kingdom)
prepared single layer of graphene using the cohesive tape method through repeated
peeling of graphite and deposited onto a Si/SiO, substrate [1, 2]. This is often
referred to as a scotch tape or drawing method. Optical microscopy was initially
used to distinguish individual graphene layers followed by their identification
in an atomic force microscope (AFM). Geim and Novoselov received the Nobel
Prize in Physics for 2010 for their pioneering work in the fabrication and physical
characterization of graphene. Such novel preparation of graphene has opened up a
new era in nanotechnology and materials science and prompted much excitement
in these fields. This technique can only produce low-yield, high-purity graphene for
research purposes, and insufficient for practical applications. Moreover, it is hard
to control the number of layers for peeled off pieces.

Polymer Composites with Carbonaceous Nanofillers: Properties and Applications, First Edition. Sie Chin Tjong.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Graphene is a 2D building material for carbon materials of different dimension-
alities. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes, or stacked into
3D graphite. (Source: Reproduced with permission from Ref. [3], Nature Publishing Group
(2007).)

As an alternative, graphene can be grown directly on solid substrates using
two different approaches. The first involves graphitization of single-crystal silicon
carbide substrate through thermal desorption of silicon in ultrahigh vacuum at
high temperatures (circa above 1300 “C). Consequently, excess carbon is left behind
on the surface. The carbon-enriched surface then undergoes reorganization and
graphitization to form graphene under proper control sublimation conditions. This
process yields epitaxial graphene with dimensions dependant on the size of SiC
substrate [8, 9]. The shortcomings of this process are the use of high processing
temperature, the formation of atomic scale defects in the graphene lattice and
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the difficulty of achieving large graphite domains with uniform thickness. The
second approach involves epitaxial growth of graphene on metal carbide (e.g., TaC,
TiC) or metallic substrates (e.g., Ni, Cu) via chemical vapor deposition (CVD)
of hydrocarbons at high temperatures. This is commonly followed by chemical
etching and transfer printing to arbitrary substrates [10—14]. For example, Kim et al.
[11] prepared patterned graphene film on thin nickel layer using a gas mixture of
CHy, Hj, and Ar, followed by transferring the printing film onto target substrates.
The growth of graphene on nickel with higher carbon solubility (>0.1 at%) occurs
by the diffusion of the carbon species into the metal surface before segregating and
precipitating to the surface on fast cooling. Ni can dissolve more carbon atoms and
thus it is difficult to obtain uniform graphene films due to precipitation of extra
C during fast cooling. In contrast, the graphene growth on low carbon solubility
Cu substrates occurs by means of surface adsorption process [13]. CVD graphene
generally exhibits lower electron mobility than mechanically exfoliated graphene
because of its higher concentration of point defects, smaller grain sizes, and residual
impurities from the transfer or growth processes [14]. The transfer-printing process
is also difficult to scale up for industrial applications. Accordingly, wet chemical
processing through oxidation of graphite into graphene oxide (GO) followed by
reduction appears to be a cost-effective method for mass-producing graphenelike
materials.

1.1.1
Graphite Intercalation Compound

Apparently, high-yield production processes for graphene sheets are necessary for
practical applications as conductive films and nanofillers for composite materials.
Hence, chemical conversion from graphite offers significant advantages over
physical approaches and the CVD process for preparing graphene for large-scale
applications. This approach converts natural graphite into graphite intercalation
compound (GIC) by reacting with electron-donor agents such as alkali metals and
electron-acceptor agents such as halogens and acids [15]. Because of its layered
structure, acid molecules and alkali metal can penetrate within the gallery spaces of
graphite. The layers of graphite interact with the guest molecules through charge
transfer process. For example, potassium can be inserted into graphite galleries to
yield both first stage and higher stages of intercalation. Stage implies the number
of graphite host layers divided by the number of guest layers that occur periodically
in the galleries. In the case where every carbon layer in graphite is intercalated, a
stage I compound forms, while intercalating on average every other layer yields a
stage I compound [16a]. The first-stage intercalation compound, KCg, has a larger
d-spacing (0.541 nm) compared to that of graphite. The second-stage compound,
KCy4, and the third-stage material, KCss, have a spacing of 0.872 and 1.2nm,
respectively (Figure 1.2). KCg generally forms by heating graphite with potassium
under vacuum at 200 “C [16b]. The KCg compound then reacts with ethanol to yield
potassium ethoxide and hydrogen gas, which aid in separating the graphitic sheets



