Introduction to Computer Science
Fifth Edition

HENBESH?
(555hR)

G. Michael Schneider
Judith L. Gersting

CENGAGE

e SRR AR

AFEHENATENELHM AT (B

Introduction to Computer Science

Fifth Edition

HENBE S

(%8 5 50

G. Michael Schneider
e
e y"' "="

fﬂdﬂ;h
NS

i "’\ - .j‘_"" s
aﬁ 9 H
s ke

Introduction to Computer Science, Fifth Edition
G. Michael Schneider

Copyright © 2010 by COURSE TECHMOLOGY a part of Cengage Learning

Original edition published by Cengage Leaming. All Rights reserved. 745 FAR b1 2% 2 5 R4 A AR, R
BATH, BEL.

Tsinghua University Press is authorized by Cengage Learning to publish and distribute exclusively this
Adaptation edition. This edition is authorized for sale in the People’s Republic of China only (excluding Hong
Kong, Macao SAR and Taiwan). Unauthorized export of this edition is a violation of the Copyright Act. No part
of this publication may be reproduced or distributed by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher.
A IR i B 3 3 R A FRERURE SR AR R AR AT . BERRA I BRAE P 4 AR IR ST A
(RaEHEEE. RIMEHTEX R EABHMRE) 858, KSR KA DR B0 E R REH
k. REBIREFABEET, AEUMEMTRERBEATEDHEMT RS . '

978-7-302-23296-4

Cengage Learning Asia Pte Ltd
5 Shenton Way, # 01-01 UIC Building Singapore 068808

A $EWH Cengage Learning B5{ARE, TIFEETHHE.
AR, B, SEREE: 010-62782989 13701121933

EH R4 B (CIP) &l

HEFLFH22 518 =Introduction to Computer Science, Fifth Edition: 35 5 fit: 230/ (3£) H%E (Schneider,
GM.) %% -EHE. - HHERFEHRE, 20109

(KEIHBHNBEESZLBEMERID
ISBN 978-7-302-23296-4

I. @it II. Q- 1L O EHAE—-EEEE—- 8 —%Ex V. OTP3
oh [iR A< B 518 CIP BiEZF (2010) 3 148469 5

BIEHRIE: R
BITEDH: EFH

HAR&IT: HeR¥EHRE bk JLREEREEDRE A B
http:/ /www.tup.com.cn B %: 100084
it B #. 010-62770175 BE W: 010-62786544
#in 5@%5&% 010-62795954, jsijc@tup.tsinghua.edu.cn
*R & & 010-62772015, zhiliang@tup.tsinghua.edu.cn
B % & %ﬁﬁ"aﬁﬂ]ﬁﬂr
% 17 & 2EFLHE
F oA 185X230 ED3K: 45
KR R: 201089 A IR Bl JR: 2010 % 9 A% 1 IKENRY
En #. 1~3000
E fr: 59.50 JT

-
Zo
£
J

+ 039221-01

O B B

HEA 21 R, HRASENEF. BHUAZSEANESFBEMRE . BH0TOTE
BERM AT . G KEERBOAL, BREESsRREaRS. BS8Y, #
HEREERANAGELY, DRAZIFEEN. HTREESHENEMEFT RS, 7T
INARBOM IO FEE, #08 ¥ IEAE A (R 3 3R R SR [S B AR B0bA

L EHEREHBRALA 1996 EFF M, SESELHIBAT AN, BEHR T “RSEIEN
BEAD (BOK)” S—RFEIHESE, SHENREHROAEE. BA 21 e, &
MEAENRETLEEETHMBERMEOVE, EOFREML, B—S5 KEEAE, %
FEBF AR, — WA 5L KU E AT RE SR AR R G EE W
HA 2 BN RE LB, HRAE “KRETENRETEIZELHMET BEH”, L
YR . IR R FE A R B B ORI R A AT EAEENER.
ERRAR A RA RS ENEE OB ES, URBIEE “KETEIHEEIES
EMAF GO MBER, EEASRITENEE.

RIS i) T

PREFACE

Overview

This text is intended for a one-semester introductory course in computer
science. It presents a breadth-first overview of the discipline that assumes no
prior background in computer science, programming, or mathematics. It is
appropriate for use in a service course for students not majoring in computer
science. It is also appropriate for schools that implement their introductory
sequence for majors using the breadth-first model described in the ACM/IEEE
Computing Curricula 2001 Report. It would be quite suitable for a high school
computer science course as well. Previous editions of this text have been used
in all these types of courses.

The Non-Majors Course

The introductory computer science service course has undergone many changes
over the years. In the 1970s and early 1980s, it was usually a course in FOR-
TRAN, BASIC, or Pascal. At that time it was felt that the most important skill a
student could acquire was learning to program in a high-level language. In the
mid-to-late ‘80s, a rapid increase in computer use caused the course to evolve
into something called “computer literacy” in which students learned about new
applications of computing in such fields as business, medicine, law, and educa-
tion. With the growth of personal computers and productivity software, a typ-
ical early to mid-1990s version of this course would spend a semester teaching
students to use word processors, databases, spreadsheets, presentation soft-
ware, and electronic mail. The most recent change has been its evolution into a
Web-centric course where students learn to design and implement Web pages
using technology such as HTML, XML, and Java applets.

Most academics feel it is time for the computer science service course to
evolve yet again. There are two reasons for this. First, virtually all students in col-
lege today are familiar with personal computers and productivity software. They
have been using word processors since elementary school and are quite familiar -
with social networks, online retailing, e-mail, and chat rooms. Many have written
Web pages and some even have their own Web sites. In this day and age, a course
that focuses on applications of computing will be of little or no interest.

But a more important reason for rethinking the structure of this course, and
the primary reason why we authored this book, is the following observation:

Most computer science service courses do not teach students about the
foundations of computer science!

We believe quite strongly that students in a computer science service course
must receive a solid grounding in the fundamental intellectual concepts of

xifi

xiv

PREFACE

computer science in addition to learning about important uses of computing
and information technology. The material in such a course would not be lim-
ited to “fun” applications such as Web page design and interactive graphics
but would also cover issues such as algorithms, hardware design, computer
organization, system software, language models, theory of computation, and
social and ethical issues of computing. An introduction to these core ideas
exposes students to the overall richness and beauty of the field. It allows them
to not only use computers and software effectively but to understand and
appreciate the basic ideas underlying their creation and implementation.

The (S1 Course

The design of a first course for computer science majors has also come in for
a great deal of discussion. Since the emergence of computer science as a dis-
tinct academic discipline in the 1960s, the first course has always been an
introduction to programming—from BASIC to FORTRAN to Pascal, to C++,
Java, and Python today. Related topics have been added to the syllabus
(e.g., object-oriented design), but the central focus has remained high-level
language programming. However, the ACM/IEEE Computing Curriculum 2001
Report suggested a number of alternative models for the first course, includ-
ing a breadth-first overview, an approach that has gained in popularity in
the last couple of years.

A first course for computer science majors using the breadth-first model
emphasizes early exposure to the sub-disciplines of the field rather than plac-
ing exclusive emphasis on programming. This gives new majors a more com-
plete and well-rounded understanding of their chosen field of study. As stated
in the Curriculum 2001 Report, “[introductory] courses that emphasize only
this one aspect [programming] fail to let students experience the many other
areas and styles of thought that are part of computer science as a whole.”

Our book—intended for either majors or non-majors—is organized around
this breadth-first approach, and it presents a wide range of ‘subject matter
drawn from many areas of computer science. However, to avoid drowning stu-
dents in a sea of seemingly unrelated facts and details, a breadth-first presen-
tation must be carefully woven into a fabric, a theme, a “big picture” that ties
together these topics and presents computer science as a unified and inte-
grated discipline. To achieve this we have divided the study of computer sci-
ence into a hierarchy of topics, with each layer in the hierarchy building on
and expanding upon concepts from earlier chapters.

A Hierarchy of Abstractions

The central theme of this book is that computer science is the study of algo-
rithms. Our hierarchy utilizes this definition by first looking at the algorithmic
basis of computer science and then moving upward from this central theme to
higher-level issues such as hardware, software, applications, and ethics. Just as
the chemist starts from protons, neutrons, and electrons and builds up to
atoms, molecules, and compounds, so, too, does our text build from elementary
concepts such as algorithms, binary arithmetic, gates, and circuits to higher-
level ideas such as computer organization, operating systems, high-level lan-
guages, applications, and the social, legal, and ethical problems of information
technology. .

The six levels in our computer science hierarchy are as follows:

Level 1. The Algorithmic Foundations of Computer Science
Level 2. The Hardware World

Level 3, The Virtual Machine

Level 4. The Software World

Level 5. Applications

Level 6. Social Issues in Computing

Following an introductory chapter, Level 1 (Chapters 2-3) introduces “The
Algorithmic Foundations of Computer Science,” the bedrock on which all other
aspects of the discipline are built. It presents iniportant ideas such as the
design of algorithms, algorithmic problem solving, abstraction, pseudocode,
iteration, and efficiency. It illustrates these ideas using well-known examples
such as searching a list, finding maxima and minima, sorting a list, and
matching patterns. It also infroduces the concepts of algorithm efficiency and
asymptotic growth and demonstrates that not all algorithms are, at least in
terms of running time, created equal.

The discussions in Level 1 assume that our algorithms are executed by
something called a “computing agent,” an abstract concept for any entity that
can effectively carry out the instructions in our solution. However, in Level 2
(Chapters 4-5), “The Hardware World,” we want our algorithms to be executed
by “real” computers to produce “real” results. Thus begins our discussion of
hardware, logic design, and computer organization. The initial discussion
introduces the basic building blocks of computer systems—binary numbers,
Boolean logic, gates, and circuits. It then shows how these elementary concepts
are used to construct a real computer using the classic Von Neumann architec-
ture, including processors, memory, buses, and input/output. It presents a typ-
ical machine language instruction set and explains how the algorithms of Level
1 can be represented in machine language and run on the Von Neumann hard-
ware of Level 2, conceptually tying together these two areas. It ends with a dis-
cussion of important new directions in hardware design—multicore and
massively parallel machines.

By the end of Level 2 students have been introduced to some basic con-
cepts in logic design and computer organization, and they understand and
appreciate the enormous complexity of these areas. This complexity is the
motivation for Level 3 (Chapters 6-8), “The Virtual Machine.” This section
describes how system software produces a more friendly, user-oriented
problem-solving environment that hides many of the ugly hardware details
just described. Level 3 looks at the same problem discussed in Level 2,
encoding and executing an algorithm, but shows how much easier this is in
a virtual environment containing software tools like editors, translators, and
loaders. This section also discusses the services and responsibilities of oper-
ating systems and how operating systems have evolved. It investigates one
of the most important virtual environments in current use—a network of
computers. It shows how systems such as the Ethernet, Internet, and the
Web are created from computers linked together via transmission media and
communications software. This creates a virtual environment in which we
can seamlessly use not only the computer on our desk but computers
located practically anywhere in the world. Level 3 concludes with a look at

PREFACE xv

xvi

PREFACE

one of the most important services provided by a virtual machine, informa-
tion security, and describes algorithms for protecting the user and the sys-
tem from accidental or malicious damage. '

Once we have created this user-oriented virtual environment, what do we
want to do with it? Most likely we want to write programs to solve interesting
problems. This is the motivation for Level 4 (Chapters 9-12), “The Software
World.” Although this book should not be viewed as a programming text, it
contains an overview of the features found in modern programming lan-
guages. This gives students an appreciation for the interesting and challeng-
ing task of the computer programmer and the power of the problem-solving
environment created by a modern high-level language. There are many differ-
ent programming language models, so this level includes a discussion of other
language types, including special-purpose languages such as SQL, HTML, and
JavaScript, as well as the functional, logic, and parallel language paradigms.
This level also describes the design and construction of a compiler and shows
how high-level languages can be translated into machine language for execu-
tion. This discussion ties together ideas presented in earlier chapters, as we
show how an algorithm (Level 1) is translated into a high-level language
(Level 4), compiled and executed on a typical Von Neumann machine (Level
2), which makes use of the system software tools of Level 3. These “recurring
themes” and frequent references to earlier concepts help reinforce the idea of
computer science as an integrated set of related topics. At the conclusion of
Level 4, we introduce the idea of computability and unsolvability. A formal
model of computing (the Turing machine) is used to prove that there exist
problems for which no general algorithmic solution can be found. It shows
students that there are provable limits to what computers and computer sci-
ence can achieve.

We now have a high-level programming environment in which it is
possible to write programs to solve important problems. In Level 5
(Chapters 13-16), “Applications,” we take a look at a few important uses of
computers in our modern society. There is no way to cover even a tiny frac-
tion of the many applications of computers and information technology in
a single section. Instead, we focus on a relatively small set that demon-
strates some important concepts, tools, and techniques of computer sci-
ence. This includes applications drawn from the sciences and engineering
(simulation and modeling), business and finance (e-commerce, databases),
the social sciences (artificial intelligence), and everyday life (computer
generated imagery, video gaming, virtual communities). Our goal is not to
provide “encyclopedic coverage” of modern computing usage; instead, it is
to show students that applications packages are not “magic boxes” whose
inner workings are totally unfathomable. Rather, they are the result of uti-
lizing core computer science concepts—e.g., algorithms, hardware, lan-
guages—presented in earlier chapters. We hope that our discussions in this
section will encourage readers to seek out information on applications and
software packages specific to their own areas of interest.

Finally, we reach the highest level of study, Level 6 (Chapter 17), “Social
Issues in Computing,” which addresses the social, ethical, and legal issues
raised by the applications presented in Level 5. This section (written by con-
tributing author Prof. Keith Miller of the University of Illinois at Springfield)
examines such thorny problems as the ownership of intellectual property in
the electronic age, national security concerns aggravated by information
technology, and the erosion of individual privacy caused by the use of online

databases. This section does not attempt to provide quick solutions to these
complex problems. Instead, it focuses on techniques that students can use to
think about these ethical issues and reach their own conclusions. Our goal in
this final section is to make students aware of the enormous impact that
information technology is having on everyone's lives and to give them tools
that will allow them to make more informed decisions.

This, then, is the hierarchical structure of our text. It begins with the
algorithmic foundations of the discipline and works its way from low-level.
hardware concepts through virtual machine environments, languages, soft-
ware, and applications to the social issues raised by computer technology.
This organizational structure, along with the use of recurring themes,
enables students to view computer science as a unified, integrated, and
coherent field of study. While the social issues material in Chapter 17 can be
presented at any time, the rest of the material is intended to be covered
sequentially.

What's New

The fifth edition of Invitation to Computer Science represents the single
biggest rewrite of this best-selling text. It includes two new chapters that
address important emerging areas of computer science. In an age where per-
sonal, financial, and medical data is all online, Chapter 8, “Information
Security,” deals with the growing problem of keeping that data safe from
improper access and inappropriate modification. Chapter 16, “Computer
Graphics and Entertainment: Movies, Games, and Virtual Communities,” looks
at how computers, once the domain of the military, government, and business,
are now being used to entertain, amaze, and enthrall. It concludes with a dis-
cussion of how these same visualization algorithms are also used to address
more important problems, such as medical imaging.

In addition to these two chapters, new material and exercises have been
added to existing chapters on Computer Organization (multicore and cluster
computing), Computer Networks (wireless computing), and Artificiat Intelligence
(robotics) as well as the addition of new Practice Problems and boxed features.

However, the single biggest change has been to move all programming-
language-specific materials, once placed into their own chapter in the text
itself, to the Cengage Web site. For the first four editions we produced two dis-
tinct versions of the text, one for C++ and the other for Java. As new lan-
guages began to enter the computer science curriculum, e.g., Python, Ada, C#,
it became infeasible to produce a separate chapter and a separate edition
for each one. Instead, Chapter 9, “Introduction to High-Level Language
Programming,” is now a general description of the features common to mod-
ern programming languages. Detailed discussions of a particular language are
available to instructors for distribution to students under the Instructor
Download section of www.cengage.com. (Currently the Cengage Web site
inctudes online language modules for C++, Java, Python, Ada, and C#, with
additional modules possible in the future.) Using this approach we can
respond much more quickly to new developments in programming language
design as well as proposals for curricular change. In addition, instructors and
students are not limited to exposure to a single language but are invited to
download (or request from instructors) the modules for any and all languages
in which they are interested.

PREFACE xvii

Xviil

PREFACE

Other Textbook Features

To challenge the more advanced students, each chapter includes, along with a
regular set of exercises, some “Challenge Problems.” These more complex ques-
tions could be used for longer assignments done either individually or by
teams of students. Finally, if a student is interested in a topic and wants more
detail, there is a section at the end of each chapter titled “For Further
Reading” with references to texts and Web sites containing additional mater-
ial on the topics covered in that chapter.

Summary

Computer science is a young and exciting discipline, and we hope that the
material in this text, along with the laboratory projects and online
modules, will convey this feeling of excitement. By presenting the field in all
its richness—algorithms, hardware, software, systems, applications, and
social issues—we hope to give students a deeper appreciation for the many
diverse and interesting areas of research and study within the discipline of
computer science.

Reviewers

The following reviewers, along with the many users of previous editions who
have provided helpful comments, have contributed to the writing of this new
edition, and we want to thank them all:

JAMES AMAN S. JaNE Fri1z

Saint Xavier University St. Joseph's College—New York
PHrLiip BARRY Barry Koi

University of Minnesota Ocean County College

ROBERT BEASLEY MIKE SCHERGER

Franklin College Texas A&M University, Corpus Christi
Douc EDWARDS STEWART SHEN

Central Texas College 0ld Dominion University

—G. Michael Schneider
Macalester College
schneider@macalester.edu

—Judith L. Gersting
University of Hawaii - Hilo
gersting@hawaii.edu

CONTENTS

Chapter 1 An Introduction to Computer Science 1

1.1 Introduction 2

Special Interest Box: In the Beginning . . . 4

1.2 The Definition of Computer Science 4

Special Interest Box: Abu Ja’ far Muhammad ibn Musa Al-Khowarizmi
(a.d. 780-850?) 8

1.3 Algorithms 10 :

1.3.1 The Formal Definition of an Algorithm 10

1.3.2 The Importance of Algorithmic Problem Solving 15

PRACTICE PROBLEMS 16

1.4 A Brief History of Computing 16

1.4.1 The Early Period: Up to 1940 16

Special Interest Box: The Original “Technophobia” 19

Special Interest Box: Charles Babbage (1791-1871) Ada Augusta
Byron, Countess of Lovelace (1815-1852) 20

1.4.2 The Birth of Computers: 1940-1950 21

Special Interest Box: John Von Neumann (1903-1957) 23

Special Interest Box: And the Verdict Is . . . 24

1.4.3 The Modern Era: 1950 to the Present 25

Special Interest Box: Good Evening, This Is Walter Cronkite 26

Special Interest Box: The World’s First Microcomputer 27

1.5 Organization of the Text 28

EXERCWMSES 34

CHALLENGE WORK 35

The Algorithmic Foundations of Computer Science 36

Chapter 2 Algorithm Discovery and Design 39
2.1 Introduction 40
2.2 Representing Algorithms 40
2.2.1 Pseudocode 40
2.2.2 Sequential Operations 43
PRACTICE PROBLEMS 45
2.2.3 Conditional and Iterative Operations 46

Special Interest Box: From Little Primitives Mighty Algorithms
Do Grow 53

PRACTICE PROBLEMS 54

2.3 Examples of Algorithmic Problem Solving 54

2.3.1 Example 1: Go Forth and Multiply 54

PRACTICE PROBLEMS 57

2.3.2 Example 2: Looking, Looking, Looking 57

2.3.3 Example 3: Big, Bigger, Biggest 62

PRACTICE PROBLEMS 66

2.3.4 Example 4: Meeting Your Match 67

PRACTICE PROBLEMS 73

2.4 Conclusion 73

EXERCISES 75

CHALLENGE WORK 77

Chapter 3 The Efficiency of Algorithms 79
3.1 Introduction 80
3.2 Attributes of Algorithms 80
PRACTICE PROBLEMS 84
3.3 Measuring Efficiency 84
3.3.1 Sequential Search 84
3.3.2 Order of Magnitude—Order n 86
Special Interest Box: Flipping Pancakes 88
PRACTICE PROBLEM 89
3.3.3 Selection Sort 89
PRACTICE PROBLEM 94
3.3.4 Order of Magnitude—Order n2 95
Special Interest Box: The Toptoise and the Hare 97
PRACTICE PROBLEM 99
3.4 Analysis of Algorithms 99
3.4.1 Data Cleanup Algorithms 99
PRACTICE PROBLEMS 105
3.4.2 Binary Search 106
PRACTICE PROBLEMS 111
3.4.3 Pattern Matching 112
3.4.4 Summary 113
PRACTICE PROBLEM 113
3.5 When Things Get Out of Hand 113
PRACTICE PROBLEMS 117
3.6 Summary of Level 1 118

ii CONTENTS

EXERCISES 120
CHALLENGE WORK 124

The Hardware World 126

Chapter 4

Chapter 5

The Building Blocks: Binary Numbers, Boolean
Logic, and Gates 129
4.1 Introduction 130 -
4.2 The Binary Numbering System 130
4.2.1 Binary Representation of Numeric and
Textual Information 130
Special Interest Box: A Not So Basic Base 133
PRACTICE PROBLEMS 142
4.2.2 Binary Representation of Sound and Images 142
PRACTICE PROBLEMS 149
4.2.3 The Reliability of Binary Representation 150
4.2.4 Binary Storage Devices 151
Special Interest Box: Moore’s Law and the Limits of *
Chip Design 156
4.3 Boolean Logic and Gates - 157
4.3.1 Boolean Logic 157
PRACTICE PROBLEMS 159
4.3.2 Gates 160
Special Interest Box: George Boole (1815-1864) 162
4.4 Building Computer Circuits 163
4.4.1 Introduction 163
4.4.2 A Circuit Construction Algorithm 165 .
PRACTICE PROBLEMS 169

4.4.3 Examples of Circuit Design and Construction 170
PRACTICE PROBLEMS 178

Special Interest Box: Dr. William Shockley (1910-1989) 179
4,5 Control Circuits 179

4.6 Conclusion 183

EXERCISES 184

CHALLENGE WORK 185

Computer Systems Organization 187

5.1 Introduction 188

5.2 The Components of a Computer System 190
5.2.1 Memory and Cache 192

Special Interest Box: Powers of 10 195

CONTENTS

ifi

PRACTICE PROBLEMS 201
5.2.2 Input/Output and Mass Storage 202
PRACTICE PROBLEMS 207
5.2.3 The Arithmetic/Logic Unit 207
5.2.4 The Control Unit 211
PRACTICE PROBLEMS 215

5.3 Putting All the Pieces Together—the Von Neumann
Architecture 219

Special Interest Box: An Alphabet Soup of Speed Measures: MHz, GHz,

MIPS, and GFLOPS 224
5.4 Non-Von Neumann Architectures 225
Special Interest Box: Speed to Burn 229
Special Interest Box: Quantum Computing 231
5.5 Summary of Level 2 231
EXERCISES 233
CHALLENGE WORK 234

The Virtual Machine 236

iv

Chapter 6

CONTENTS

An Introduction to System Software and Virtual Machines
6.1 Introduction 240

6.2 System Software 241

6.2.1 The Virtual Machine 241

6.2.2 Types of System Software 243

6.3 Assemblers and Assembly Language 245

6.3.1 Assembly Language 245

PRACTICE PROBLEMS 251

6.3.2 Examples of Assembly Language Code 252
PRACTICE PROBLEMS 256

6.3.3 Translation and Loading 257

PRACTICE PROBLEMS 261

6.4 Operating Systems 263

6.4.1 Functions of an Operating System 264

Special Interest Box: A Machine for the Rest of Us 266
PRACTICE PROBLEM 270

Special Interest Box: The Open Source Movement 273
6.4.2 Historical Overview of Operating Systems Development
Special Interest Box: Now That's Big! 274

6.4.3 The Future 281

EXERCISES 284

CHALLENGE WORK 286

239

273

Chapter 7

Chapter 8

Computer Networks, the Internet, and the World Wide Web
7.1 Introduction 288

7.2 Basic Networking Concepts 289

7.2.1 Communication Links 289

Special Interest Box: Blogs 289

PRACTICE PROBLEMS 295

Special Interest Box: Ubiguitous Computing 295
7.2.2 Local Area Networks 296

PRACTICE PROBLEMS 298

7.2.3 Wide Area Networks 299

7.2.4 Overall Structure of the Internet 300

7.3 Communication Protocols 304

7.3.1 Physical Layer 305

7.3.2 Data Link Layer 305

PRACTICE PROBLEMS 309

7.3.3 Network Layer 309

PRACTICE PROBLEMS 312

7.3.4 Transport Layer. 312

7.3.5 Application Layer 315

7.4 Network Services and Benefits 319
Special Interest Box: Spam 320

7.5 A Brief History of the Internet and the World Wide Web
7.5.1 The Internet 322

7.5.2 The World Wide Web 326

Special Interest Box: Geography Lesson 326

7.6 Conclusion 328

Special Interest Box: Social Networking 328
EXERCISES 330

CHALLENGE WORK 331

Information Security 333

8.1 Introduction 334

8.2 Threats and Defenses 334

Special Interest Box: How Hackers became Crackers 335
8.2.1 Authentication and Authorization 335

Special Interest Box: Password Pointers 338
PRACTICE PROBLEM 339

8.2.2 Threats from the Network 339

Special Interest Box: Beware the Trojan Horse 340
Special Interest Box: Defense Against the Dark Arts 341
Special Interest Box: Gone Phishin’ 341

8.3 Encryption 342

8.3.1 Encryption Overview 342

8.3.2 Simple Encryption Algorithms 342

CONTENTS

287

322

PRACTICE PROBLEMS 345
Special Interest Box: Hiding in Plain Sight 346
8.3.3 DES 346

Special Interest Box: Cracking DES 349
8.3.4 Public Key Systems 349
PRACTICE PROBLEM 350
8.4 Web Transmission Security 350
8.5 Conclusion 351

8.6 Summary of Level 3 352
EXERCISES 353
CHALLENGE WORK 354

The Software World 356

Chapter 9 Introduction to High-Level Language Programming 359
9.1 The Language Progression 360 '
9.1.1 Where Do We Stand and What Do We Want? 360
9.1.2 Getting Back to Binary 363
9.2 A Family of Languages 364
9.3 Two Examples in Five-Part Harmony 365
9.3.1 Favorite Number 365
9.3.2 Data Cleanup (Again) 368
9.4 Feature Analysis 377
9.5 Meeting Expectations 377
9.6 The Big Picture: Software Engineering 385
9.6.1 Scaling Up 386
9.6.2 The Software Development Life Cycle 387
Special Interest Box: Vital Statistics for Real Code 388
9.6.3 Modern Environments 392
9.7 Conclusion 393
EXERCISES 394
CHALLENGE WORK 394

Chapter 10 The Tower of Babel 397

10.1 Why Babel? 398

10.2 Procedural Languages 399

10.2.1 Plankalkiil 400

10.2.2 Fortran 400

Special Interest Box: Old Dog, New Tricks #1 402
PRACTICE PROBLEM 402

10.2.3 COBOL 402

PRACTICE PROBLEM 404

vi CONTENTS

Chapter 11

10.2.4 C / C++ 404

PRACTICE PROBLEMS 407

10.2.5 Ada 407 .

PRACTICE PROBLEM 408

10,2.6 Java 408

PRACTICE PROBLEM 410

10.2.7 Python 410

PRACTICE PROBLEM 411

10.2.8 C# and .NET 411

Special Interest Box: 0ld Dog, New Tricks #2 412
PRACTICE PROBLEM 413

10.3 Special-purpose Languages 413

10.3.1 SQL 413

10.3.2 HTML 414

Special Interest Box: Beyond HTML 417

10.3.3 JavaScript 417

Special Interest Box: PHP 418

PRACTICE PROBLEMS 419

10.4 Alternative Programming Paradigms 420
10.4.1 Functional Programming 421

Special Interest Box: Simplicity Is in the Eye of the Beholder
PRACTICE PROBLEMS 426

10.4.2 Logic Programming 426

PRACTICE PROBLEMS 431

10.4.3 Paraliel Programming 432

Special Interest Box: Let Me Do That For You 437
PRACTICE PROBLEM 438

10.5 Conclusion 438

Special Interest Box: Parallel Computing with Titanium 438
EXERCISES 441

CHALLENGE WORK 443

Compilers and Language Translation 445
11.1 Introduction 446

11.2 The Compilation Process 449
11.2.1 Phase I: Lexical Analysis 450
PRACTICE PROBLEMS 453
11.2.2 Phase IT: Parsing 453
PRACTICE PROBLEMS 459
PRACTICE PROBLEMS 469
11.2.3 Phase III: Semantics and Code Generation 470
PRACTICE PROBLEM 479
11.2.4 Phase IV: Code Optimization 479

CONTENTS

vit

