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Preface

This book concerns itself with the mathematics behind the application of clas-
sical statistical procedures to econometric models. I first tried to apply such
procedures in 1983 when I wrote a book with Roger Bowden on instrumental
variable estimation. I was impressed with the amount of differentiation involved
and the difficultly I had in recognizing the end product of this process. I thought
there must be an easier way of doing things. Of course at the time, like most
econometricians, I was blissfully unaware of matrix calculus and the existence
of zero-one matrices. Since then several books have been published in these ar-
eas showing us the power of these concepts. See, for example Graham (1981),
Magnus (1988), Magnus and Neudecker (1999), and Lutkepohl (1996).

This present book arose when I set myself two tasks: first, to make myselfalist
of rules of matrix calculus that were most useful in applying classical statistical
procedures to econometrics; second, to work out the basic building blocks of
such procedures —the score vector, the information matrix, and the Cramer—Rao
lower bound — for a sequence of econometric models of increasing statistical
complexity. I found that the mathematics involved working with operators that
were generalizations of the well-known vec operator, and that a very simple
zero-one matrix kept cropping up. I called the matrix a shifting matrix for
reasons that are obvious in the book. Its basic nature is illustrated by the fact
that all Toeplitz circulant matrices can be written as linear combinations of
shifting matrices.

The book falls naturally into two parts. The first part outlines the classical
statistical procedures used throughout the work and aims at providing the reader
with the mathematical tools needed to apply these procedures to econometric
models. The statistical procedures are dealt with in Chap. 1. Chapter 2 deals
with elements of matrix algebra. In this chapter, generalized vec and devec op-
erators are defined and their basic properties investigated. Chapter 3 concerns
itself with zero-one matrices. Well-known zero-one matrices such as commu-
tation matrices, elimination matrices, and duplication matrices are defined and
their properties listed. Several new zero-one matrices are introduced in this
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X Preface

chapter. Explicit expressions are given for the generalized vec and devec of
the commutation matrix, and the properties of these matrices are investigated
in several theorems. Shifting matrices are defined and the connection among
these matrices and Toeplitz and circulant matrices is explained. Moreover, the
essential role they play in time-series processes is demonstrated. Chapter 4 is
devoted to matrix calculus. The approach taken in this chapter is to derive the
matrix calculus results from a few basic rules that are generalizations of the
chain rule and product rule of ordinary calculus. Some of these results are new,
involving as they do generalized vecs of commutation matrices. A list of useful
rules is given at the end of the chapter.

The second part of the book is designed to illustrate how the mathematical
tools discussed in the preceding chapters greatly facilitate the application of
classical statistical procedures to econometric models in that they speed up the
difficult differentiation involved and help in the required asymptotic work.

In all, nine linear statistical models are considered. The first three models
(Chap. 5) are based on the linear-regression model: the basic model, the linear-
regression model with autoregressive disturbances, and the linear-regression
model with moving-average disturbances. The next three models (Chap. 6)
are based on the seemingly unrelated regression equations (SURE) model: the
basic model, the SURE model with vector autoregressive disturbances, and the
SURE model with vector moving-average disturbances. The final three models
(Chap. 7) are based on the linear simultaneous equations (LSE) model. We
consider the basic LSE model and the two variations that come about when we
assume vector autoregressive or vector moving-average disturbances.

For each model considered, the basic building blocks of classical statistics
are obtained: the score vector, the information matrix, and the Cramer—Rao
lower bound. Statistical analysis is then conducted with these concepts. Where
possible, econometric estimators of the parameters of primary interest that
achieve the Cramer—Rao lower bound are discussed. Iterative interpretations
of the maximum-likelihood estimators that link them with the econometric
estimators are presented. Classical test statistics for hypotheses of interest are
obtained.

The models were chosen in such a way as to form a sequence of models
of increasing statistical complexity. The reader can then see, for example, how
the added complication changes the information matrix or the Cramer-Rao
lower bound. There are, in fact, two such sequences in operation. We have in
Chap. 5, for example, the basic linear-regression model followed by versions
of this model with more complicated disturbance structures. Second, between
chapters, we have sequences of models with the same characteristics assigned to
the disturbances: for example, the linear-regression model with autoregressive
disturbances followed by the SURE model and the LSE model with vector
autoregressive disturbances.




Preface xi

It is assumed that the reader has a good working knowledge of matrix al-
gebra, basic statistics, and classical econometrics and is familiar with standard
asymptotic theory. As such, the book should be useful for graduate students
in econometrics and for practicing econometricians. Statisticians interested in
how their procedures apply to other fields may also be attracted to this work.

Several institutions should be mentioned in this preface: first, my home
university, the University of Western Australia, for allowing me time off from
teaching to concentrate on the manuscript; second, the University of Warwick
and the University of British Columbia for providing me with stimulating
environments at which to spend my sabbaticals. At Warwick I first became
interested in matrix calculus; at British Columbia I put the finishing touches to
the manuscript.

Several individuals must also be thanked: my teacher Tom Rothenberg, to
whom I owe an enormous debt; Adrian Pagan, for his sound advice; Jan Magnus,
for introducing me to the intricacies of zero-one matrices; my colleagues Les
Jennings, Michael McAleer, Shiging Ling, and Jakob Madsen for their helpful
suggestions and encouragement; Helen Reidy for her great patience and skill
in typing the many drafts of this work; finally, my family, Sonia, Joshua, and
Nikola, for being there for me.
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This book presents the reader with mathematical tools taken from matrix cal-
culus and zero-one matrices and demonstrates how these tools greatly facilitate
the application of classical statistical procedures to econometric models. The
matrix calculus results are derived from a few basic rules that are general-
izations of the rules of ordinary calculus. These results are summarized in
a useful table. Well-known zero-one matrices, together with some new ones,
are defined, their mathematical roles explained, and their useful properties
presented.

The basic building blocks of classical statistics, namely, the score vector,
the information matrix, and the Cramer—Rao lower bound, are obtained for
a sequence of linear econometric models of increasing statistical complexity.
From these are obtained interactive interpretations of maximum likelihood
estimators, linking them with efficient econometric estimators. Classical test
statistics are also derived and compared for hypotheses of interest.

Darrell A. Turkington is Professor in the Department of Economics at the
University of Western Australia, Perth. He is coauthor with Roger J. Bowden
of the widely cited work Instrumental Variables (1984) in the Econometric
Society Monographs series published by Cambridge University Press.
Professor Turkington has published in leading international journals such as
the Journal of the American Statistical Association, the International Eco-
nomic Review, and the Journal of Econometrics. He has held visiting positions
at the University of California, Berkeley, the University of Warwick, and the
University of British Columbia.
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1 Classical Statistical Procedures

1.1. INTRODUCTION

An alternative title to this book could have been The Application of Classical
Statistical Procedures to Econometrics or something along these lines. What
it purports to do is provide the reader with mathematical tools that facilitate
the application of classical statistical procedures to the complicated statistical
models that we are confronted with in econometrics. It then demonstrates how
these procedures can be applied to a sequence of linear econometric models,
each model being more complicated statistically than the previous one. The
statistical procedures I have in mind are these centered around the likelihood
function: procedures that involve the score vector, the information matrix, and
the Cramer—Rao lower bound, together with maximum-likelihood estimation
and classical test statistics.

Until recently, such procedures were little used by econometricians. The like-
lihood function in most econometric models is complicated, and the first-order
conditions for maximizing this function usually give rise to a system of nonlin-
ear equations that is not easily solved. As a result, econometricians developed
their own class of estimators, instrumental variable estimators, that had the same
asymptotic properties as those of maximum-likelihood estimators (MLEs) but
were far more tractable mathematically [see Bowden and Turkington (1990)].
Nor did econometricians make much use of the prescribed classical statistical
procedures for obtaining test statistics for the hypotheses of interest in econo-
metric models; rather, test statistics were developed on an ad hoc basis.

All that changed in the last couple of decades, when there was renewed inter-
est by econometricians in maximum-likelihood procedures and in developing
Lagrangian multiplier test (LMT) statistics. One reason for this change was
the advent of large, fast computers. A complicated system of nonlinear equa-
tions could now be solved so we would have in hand the maximum-likelihood
estimates even though we had no algebraic expression for the underlying es-
timators. Another more recent explanation for this change in attitude is the
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2 Matrix Calculus and Zero-One Matrices

advent of results on zero-one matrices and matrix calculus. Works by Graham
(1981), Magnus (1988), Magnus and Neudecker (1988), and Lutkepohl (1996)
have shown us the importance of zero-one matrices, their connection to matrix
calculus, and the power of matrix calculus particularly with respect to applying
classical statistical procedures.

In this introductory chapter, I have a brief and nonrigorous summary of the
classical statistical procedures that are used extensively in the latter part of this
book.

1.2. THE SCORE VECTOR, THE INFORMATION MATRIX,
AND THE CRAMER-RAO LOWER BOUND

Let & be a k x 1 vector of unknown parameters associated with a statistical
model and let /(9) be the log-likelihood function that satisfies certain regularity
conditions and is twice differentiable. Let 31/36 denote the k x 1 vector of
partial derivatives of /. Then 9//96 is called the score vector. Let 821/3606’
denote the k x k Hessian matrix of [(6). Then the (asymptotic) information
matrix is defined as

1
1(6) = — lim —E(8°1/3036"),
n—>o00 N

where n denotes the sample size. Now the limit of the expectation need not
be the same as the probability limit. However, for the models we consider in
this book, based as they are on the multivariate normal distribution, the two
concepts will be the same. As a result it is often more convenient to regard the
information matrix as

1
1(9) = —plim—3%1/3000'.
n

The inverse of this matrix, /~'(6), is called the (asymptotic) Cramer—Rao
lower bound. Let @ be a consistent estimator of & such that

S — )3 N, V).

The matrix V is called the asymptotic covariance matrix of 6. Then V ex-
ceeds the Cramer—Rao lower bound 7~!(6) in the sense that V — I71(9) is a
positive-semidefinite matrix. If V =/ ~1(6), then 6 is called a best asymptoti-
cally normally distributed estimator (which is shortened to BAN estimator).

1.3. MAXIMUM LIKELIHOOD ESTIMATORS
AND TEST PROCEDURES

Classical statisticians prescribed a procedure for obtaining a BAN estimator,
namely the maximum-likelihood procedure. Let @ denote the parameter space.
Then any value of § that maximizes [(9) over @ is called a maximum-likelihood
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Classical Statistical Procedures 3

estimate, and the underlying estimator is called the MLE. The first-order con-
ditions for this maximization are given by

alo)
0
Let § denote the MLE of 6. Then @ is consistent, and @ is the BAN estimator so

0.

V(6 — 6)-> N[0, 17\ (®)].

Let h be a G x 1 vector whose elements are functions of the elements of 6. We
denote this by (). Suppose we are interested in developing test statistics for
the null hypothesis

Hop:h(@)=0
against the alternative
Hy:h(®) #0.

Let & denote the MLE of @ and & denote the constrained MLE of 6; that is,
@ is the MLE of 6 we obtain after we impose Ho on our statistical model.
Let dh(0)/06 denote the k x G matrix whose (ij) element is dh,/36;. Then
classical statisticians prescribed three competing procedures for obtaining a test
statistic for Hp. These are as follows.

LAGRANGIAN MULTIPLIER TEST STATISTIC

2 laz(e)' 5 81(0)
b )00 ®)

Note that the LMT statistic uses the constrained MLE of 6. If Hp is true, 0

should be close to @ and as, by the first-order conditions, d/ (6)/86 = 0, the

derivative 9/(0)/00 evaluated at 6 should also be close to the null vector. The

test statistic is a measure of the distance 3/(€)/36 is from the null vector.
WALD TEST STATISTIC

h(e)[ h(@y ‘(9)3h( )] h(@®).

Note that the Wald test statistic uses the (unconstrained) MLE of 6. Essentially
it is based on the asymptotic distribution of J/nh(@) under Hop, the statistic
itself measuring the distance h(@) is from the null vector.

LIKELIHOOD RATIO TEST STATISTIC

T; = 2[1(6) — 1(0)].

Note that the likelihood ratio test (LRT) statistic uses both the unconstrained
MLE & and the constrained MLE 6. If Hy, is indeed true, it should not matter
whether we impose it or not, so [ (6) should be approximately the same as [(9).
The test statistic 73 measures the difference between [ (6) and 1(6).
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All three test statistics are asymptotically equivalent in the sense that, under
Hop, they all have the same limiting x? distribution and under H,, with local
alternatives, they have the same limiting noncentral x? distribution. Usually
imposing the null hypothesis on our model leads to a simpler statistical model,
and thus the constrained MLEs § are more obtainable than the § MLEs. For
this reason the LMT statistic is often the easiest statistic to form. Certainly it is
the one that has been most widely used in econometrics.

1.4. NUISANCE PARAMETERS

Let us now partition 6 into 0 = (a’'B’)’, where a isa k; x 1 vector of parameters
of primary interestand B isa k, x 1 vector of nuisance parameters, k| + k> = k.
The terms used here do not imply that the parameters in 8 are unimportant to
our statistical model. Rather, they indicate that the purpose of our analysis is to
make statistical inference about the parameters in « instead of those in S.

In this situation, two approaches can be taken. First, we can derive the infor-
mation matrix /(#) and the Cramer—Rao lower bound 7~!(6). Let

= Iaa Iaﬁ
1(9)—[% ,ﬁﬂ],

-1 oo Iaﬁ

V= (Iﬁa Iﬂﬂ)
be these matrices partitioned according to our partition of 6. As far as « is
concerned we can now work with 7, and /** in place of 1(6) and 1~'(0), re-

spectively. For example, /** is the Cramer—Rao lower bound for the asymptotic
covariance matrix of a consistent estimator of «. If @ is the MLE of «, then

(@ —a) > N, 1),

and so on.
A particular null hypothesis that has particular relevance for us is

Hoia =0
against
HAZC! #0

Under this first approach, the classical test statistics for this null hypothesis
would be the following test statistics.
LAGRANGIAN TEST STATISTIC

T, = 1 Oy 81(6)
n Jda
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WALD TEST STATISTIC
T, = n@'1**(9)'a.
LIKELIHOOD RATIO TEST STATISTIC
T3 = 2[1@) — ().

Under Hy all three test statistics would have a limiting x? distribution with k,
degrees of freedom, and the nature of the tests insists that we use the upper tail
of this distribution to find the appropriate critical region.

The second approach is to work with the concentrated log-likelihood func-
tion. Here we undertake a stepwise maximization of the log-likelihood
function. We first maximize /(#) with respect to the nuisance parameters j to
obtain B = B(«), say. The vector B is then placed back in the log-likelihood
function to obtain

I(e) = I[et, B(e)].

The function /() is called the concentrated likelihood function. Our analysis
can now be reworked with /() in place of /(9).
For example, let

and let @ be any consistent estimator of & such that
) d
Vn(@ — a)—= N(O, V,).

Then V, > T s in the sense that their difference is a positive-semidefinite
matrix. If & is the MLE of «, then & is obtained from

ol

— =0,

o

Vi@ —a) > NO, I,

and so on. As far as test procedures go for the null hypothesis Hy : h(a) = 0,
under this second approach we rewrite the test statistics by using [ and 7 in
place of /(6) and /(8), respectively. In this book, I largely use the first approach
as one of my expressed aims is to achieve the complete information matrix 7(6)
for a sequence of econometric models.

1.5. DIFFERENTIATION AND ASYMPTOTICS

Before we leave this brief chapter, note that classical statistical procedures
involve us in much differentiation. The score vector d//36, the Hessian matrix
821/0036', and dh/d6 all involve working out partial derivatives. It is at this
stage that difficulties can arise in applying these procedures to econometric
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models. As hinted at in Section 1.2, the log-likelihood function /(6) for most
econometric models is a complicated function, and it is no trivial matter to
obtain the derivatives required in our application. Usually it is too great a task
for ordinary calculus. Although in some cases it can be done, [see, for example,
Rothenberg and Leenders (1964)], what often happens when one attempts to
do the differentiation by using ordinary calculus is that one is confronted with
a hopeless mess. It is precisely this problem that has motivated the writing of
this book. I hope that it will go some way toward alleviating it.

It is assumed that the reader is familiar with standard asymptotic theory.
Every attempt has been made to make the rather dull but necessary asymptotic
analysis in this book as readable as possible. Only the probability limits of the
information matrices that are required in our statistical analysis are worked out
in full. The probability limits themselves are assumed to exist — a more formal
mathematical analysis would give a list of sufficient conditions needed to ensure
this. Finally, as already noted, use is made of the shortcut notation

< d
V(B — )= N(0, V)
rather than the more formally correct notation

Jn(B - B)S x ~ N, V).




2 Elements of Matrix Algebra

2.1. INTRODUCTION

In this chapter, we consider matrix operators that are used throughout the book
and special square matrices, namely triangular matrices and band matrices, that
will crop up continually in our future work. From the elements of an m x n
matrix, A = (a;;) and a p x ¢ matrix, B = (b;;), the Kronecker product forms
an mp x nq matrix. The vec operator forms a column vector out of a given
matrix by stacking its columns one underneath the other. The devec operator
forms a row vector out of a given matrix by stacking its rows one alongside the
other. In like manner, a generalized vec operator forms a new matrix from a
given matrix by stacking a certain number of its columns under each other and
a generalized devec operator forms a new matrix by stacking a certain number
of rows alongside each other. It is well known that the Kronecker product is
intimately connected with the vec operator, but we shall see that this connection
also holds for the devec and generalized operators as well. Finally we look at
special square matrices with zeros above or below the main diagonal or whose
nonzero elements form a band surrounded by zeros. The approach I have taken
in this chapter, as indeed in several other chapters, is to list, without proof, well-
known properties of the mathematical concept, in hand. If, however, I want to
present a property in a different light or if I have something new to say about
the concept, then I will give a proof.

2.2. KRONECKER PRODUCTS

Let A = (a;;) be an m x n matrix and B a p x ¢ matrix. The mp x ng matrix
given by

a“B al,,B

Qi B ien@@na B



