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The major part of this two-volume textbook stems from the
course in mathematical analysis given by the author for many
years at the Moscow Physico-techrical Institute.

The first volume consisting of eleven chapters includes an
introduction (Chapter 1) which treats of fundamental notions of
mathematical analysis using an intuitive concept of a limit. With
the aid of visual interpretation and some considerations of a
physical character it establishes the relationship between the
derivative and the integral and gives some elements of differen-
tiation and integration techniques necessary to those readers
who are simultaneously studying physics.

The notion of a real number is interpreted in the first volume
(Chapter 2) on the basis of its representation as an infinite deci-
mal.

Chapters 3-11 contain the following topics: Limit of Se-
quence, Limit of Function, Functions of One Variable, Func-
tions of Several Variables, Indefinite Integral, Definite Integral,
Some Applications of Integrals, Series.



CHAPTER 12

Multiple Integrals

§ 12.1. Introduction

Let us consider a continuous surface, lying in the three-dimensional space
with rectangular coordinates (x, y, z), which is determined by an equation

z=f@=f(x,») (@=(x)»€Q)

where £ is a bounded (two-dimensional) set possessing area (two-dimen-
sional measure*). For instance, £ can be a circle, a rectangle, an ellipse,
etc. We shall suppose that the function f(x, y) is positive. Let us state the
following problem: it is required to find the volume of the solid bourded
above by the given surface and below by the plane z = 0, its lateral boun-
dary being the cylindrical surface with generators parallel to the z-axis
and passing through the boundary curve y of the set £2.

To determine the sought-for volume we resort to the following natural
procedure.

The set £2 is divided into a finite number N of parts (subdomains)

‘Qh ---,QN (1)

any two of which either do not intersect or intersect only alongsome parts
of their boundaries. Let these subdomains be such that they possess areas
(two-dimensional measures) which we shall denote as m&i, ..., mQy
respectively.

Let us introduce the notion of the diameter of a set: if 4 is a set in the
plane its diameter d( A) is defined as

d(4) = sup |P'—P"|
P,P'cA

where the supremum is taken over all the pairs of points P’, P’ belonging to 4.

Now we choose an arbitrary point Q; = (§;, ;) ( =1, ..., N) in each
part £2; and form the sum

Yy = 3 /(@)mS, @
j=1

* See § 12.2,
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which can be regarded as an approximation to the sought-for volume V.
We can naturally suppose that the smaller the diameters d(£;) of the sub-
domains £; are, the higher is the accuracy of the approximation V' = Vy.
Therefore the volume V of the solid in question can be defined as the limit

V= lim Zf (Q))m; ©)

max d(2;)—0 ;73

to which sum (2) tends when the maximum diameter of the subdomains of
partitions (1) are made to tend to zero provided that this limit exists and is
independent of the way in which the sequence of partitions (1) is chosen.

Now we can abstract from the problem of finding the volume of a solid
and regard expression (3) as the result of an operation performed on the
given function f defined in 2. It is called the Riemann double integral of the
Jfunction f over the domain (2 and is denoted

V=_tim Ym0 =[]/ dxdy = [7(@)do = [fa0

max d(s2;)—0 j=1

Let us consider a problem leading to the notion of the triple integral.
Suppose that there is a physical body occupying a domain (set) {2 in the
three-dimensional space with rectangular coordinates (x, y, z) and that the
mass of the body is distributed (nonuniformly, in the general case) over 2
with volume density u (x, y, z) = u(Q) (Q = (x, y, z) € Q). It is required
to determine the total mass of the body Q2

To solve this problem it is natural to partition 2 into N parts £y, ...,
Qx whose volumes (three-dimensional measures) are mQ;, ..., mQy
(on condition that these volumes exist), to choose an arbitrary point Q; =
= (x5, 2) €2;(j = 1, ..., N)in each of the parts and to define the sought-
for mass as the limit

M = Z #(Q)m<; 4

max d(.()_,)—-o

Expression (4) can again be regarded as the result of an operation per-
formed on the function p defined in the three-dimensional set (2. It is called
the Riemann triple integral of f on 2 and is denoted as

M= Y w(Q)me; = fu(Q) dQ = f [ [ wtx, y, 2) dx dy dz

max d(.Q )—0

The Riemann n-fold multiple integral is defined in the same way.

We shall see that the theory of (Riemann) multiple integration which
includes existence theorems and theorems on the additive properties of the
integral can be presented for the n-dimensional case in exactly the same
manner as in the case of dimension 1. However, the theory of multiple
integrals involves some specific difficulties which were not encountered in
the theorv of one-fold integration.
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The matter is that the (Riemann) one-fold integral was defined for an
extremely simple set, namely, for a closed interval [a, b] which was parti-
tioned into parts which were also closed intervals. Therefore we had no diffi-
culties in defining the lengths (one-dimensional measures) of the intervals.
But in the case of a double integral or, generally, n-fold integral, the domain
of integration £ can be split into parts with curvilinear boundaries, which
makes it necessary to define the notion of the area or, generally, of the
n-dimensional measure of such a part. A similar question would also appear
in the case n = 1 if we defined the one-fold Riemann integral for a set of
a more complex structure than that of a closed interval.

In this connection we must state a strict definition of the notion of measure
of a set and investigate the properties of the measure. Therefore we begin
this chapter with the theory of the Jordan* measure closely related to the
theory of the Riemann integral. This theory forms the basis for the repre-
sentation of the theory of the Riemann multiple integral. The latter theory
provides an important method for evaluation of n-fold multiple integrals
by reducing them to the so-called iterated (repeated) integrals involving n
one-fold integrations with respect to each of the variables; in many impor-
tant cases this procedure admits of the application of the Newton-Leibniz
theorem established for one-fold integrals.

§ 12.2. Jordan Squarable Sets

Let us consider the plane R = R, with a definitely chosen rectangular
coordinates (x, y); this coordinate system will also be denoted by the same
letter R.

If some other coordinate system (&, #) is taken in the same plane we
shall denote the plane (and the new coordinate system) by R'.

A rectangle 4 in the plane R will be regarded as the simplest set. It can
be defined analytically by assuming that there is a system of rectangular
coordinates R’ in which 4 is representable as a set of points (&, n) satisfying
inequalities of the form

a1$§<a2, blsﬂﬁbz (1)

where a;, as, b; and b, are some numbers such that a; < a» and by < b,.
The coordinate system R’ possesses the property that the sides of A are
parallel to its coordinate axes. To stress that the sides of 4 are parallel to the
coordinate axes of the system R’ we shall write 4 = Agr. The rectangles
of the type of 4 are understood here as closed sets (closed rectangles in-
cluding their boundaries).

Now we define the notion of an elementary figure o: a set ¢ — R will be
called an elementary figure if it is representable as a (set-theoretic) sum of
a finite number of rectangles 4 — Rany two of which either do not intersect
or intersect only along some parts of their boundaries. The area |o| of

* C. Jordan (1838-1922), a French mathematician.
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a two-dimensional elementary figure o is defined as the sum of the areas of
the rectangles 4 of which ¢ is composed.

A given figure o can be represented as a finite sum (union) of rectangles
A in infinitely many ways but the area |¢| is independent of the representa-
tion. This assertion can readily be proved using the means of elementary
geometry, and we do not dwell on it here.

An empty set is also regarded as a figure and its measure (area) is under-
stood as being zero.

In inequalities (1) defining a rectangle 4 we assumed that a; < g2 and
by < bs. Therefore separate points and line segments will not be regarded
as rectangles; our representation of the theory of measure will not involve
such “degenerate” rectangles.

If an elementary figure o is representable as a sum of rectangles A4 whose
sides are parallel to the axes of the coordinate system R we shall write
g = OR.

Enumerated below are some simple properties of elementary figures o.
Their proofs are quite simple and we do not dwell on them here.

(a) If 01 C 05 then | 01| < |03].

(b) The (set-theoretic) sum of figures o and oy is a figure oy and there holds
the inequality

lop+0% | < |opl+|o%

It becomes an equality if oy and oy either do not intersect each other or
intersect only along some parts of their boundaries.

(c) The difference of two figures ox and oy is not necessarily a closed set
and therefore it may not be an elementary figure. It can only be a figure
(possibly empty) if op C of or if o and oz do not intersect. However, the
closure op—og of this difference is always a figure and there holds the in-
equality

|or—0F | = |og|—|oF |

It turns into an equality if o C op.

(d) If a figure oy is divided into two parts by a line parallel to one of the
coordinate axes of the system R these parts are two figures oy and oy .

To these properties we shall add two more; one of them is connected
with the notion of a network.

Let us take an arbitrary natural number N and construct two families
of straight lines: x =khand y =lh (h=2"N; k, I =0, +1, £2, ...).
These families determine the rectangular network Sy dividing R into the
squares 4, with sides of length h parallel to the axes of R. When we pass
from a network Sy to Sy, each of the squares of Sy splits into four con-
gruent squares.

Let G < R be an arbitrary bounded nonempty set. Let the symbol
on(G) = @y denote the figure consisting of all the squares 4 of the network
S~ which are entirely contained in G 2nd let &,{G) = @&y be the figure
consisting of those squares A; of Sy each of which contains at least one



