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Preface

The purpose of this book is to give an exposition of the analytic theory of L-
functions following the ideas of harmonic analysis inaugurated by Tate and Weil.
The central theme is the exploitation of the Local Langlands’ Correspondence for
GL, to obtain results that apply to both Artin-Hecke L-functions associated to
representations of the Weil group and to automorphic L-functions of principal type
on GL,. In addition to establishing functional equations, explicit formulas and
non-vanishing theorems, essential ingredients in any discussion of generalized prime
number theorems, we also derive lower bound estimates for discriminants and con-
ductors.

The author’s intention has been to make available to a broad mathematical
audience those aspects of the theory of L-functions that are closely related to the
modern interconnections between the analytic theory of numbers and the theory of
group representations.

A noteworthy characteristic property of number fields that distinguishes them
from function fields is the existence of archimedean primes. These primes not only
make their appearance as gamma factors, but also play a crucial role in controlling
the analytic growth of L-functions and in the distribution of zeros and poles. In
this spirit, we have placed a great deal of emphasis in the study of archimedean
L-factors.

A detailed description of the contents of each chapter can be obtained from the
introductory section. A survey of the local theory of root numbers is also included
as an appendix.

This book is based on lectures given by the author over a period of several
years first at the University of Illinois and more recently at the Graduate School
and University Center of the City University of New York. The author acknowledges
the help he has received from many of his colleagues and students. The appendix,
written in collaboration with Aaron Wan, is the result of many fruitful discussions
about root numbers, and for these the author is particularly thankful.

Carlos Julio Moreno

North Salem, December 14, 2004
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Advice to the Reader

It is necessary for the reader of this survey to be familiar with the following
topics:

(a) He must have a good elementary knowledge of the theory of analytic functions
of one complex variable, as contained for instance in L. Ahlfors, Complex Analysis
[1].

(b) He must know the basic definitions in the theory of functions of a real variable
at the level of H. Royden, Real Analysis [150] (see also Rudin [151]).

(c) He must have taken a graduate level course in number theory at a level com-
parable to that in E. Hecke, Lectures in the Theory of Algebraic Numbers [76] (see
also [104],[105],[207]). In particular, he must know the three fundamental results
of algebraic number theory: the unique factorization of ideals, the finiteness of the
class group, and the Dirichlet unit theorem.

If he wishes to profit from the reading of the proofs in the individual chap-
ters, each written in an increasing order of sophistication, he must also have an
acquaintance with certain concepts and results which unfortunately appear scat-
tered throughout the mathematical literature. In the following we suggest a road
map that can facilitate his reading of the relevant literature and prepare him for
further study and research of the relevant topics.

Chapter I. The rudimentary knowledge of abstract harmonic analysis needed can
be acquired by selectively reading those chapters in L. Loomis, An Introduction
to Abstract Harmonic Analysis [115] or in the short and elegant monograph by G.
Bachman, Elements of Abstract Harmonic Analysis [8], which deal specifically with
topological groups, Haar measure, character and dual groups, and Fourier analysis
on locally compact abelian groups. An exposition of these topics that is still worth
reading from a historical point of view can be found in A. Weil, L integration dans
les groupes topologiques et ses applications [209] and in L. Pontrjagin, Topological
Groups [144].

An excellent introduction to the basic theory of distributions can be gleaned
from the first two chapters in L. Hormander, The Analysis of Linear Partial Dif-
ferential Operators I [80].

The Appendix in Chapter I, §3 on principal L-functions on GL(n) is meant
to serve only as an outline of how the Hecke-Tate theory on GL,(k) generalizes
to G'Ly(k), and requires some concepts from representation theory not covered in
the earlier sections, but which are essential ingredients in the understanding of
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the theory of automorphic L-functions on GL, (k). A more detailed presentation
can be found in A. Weil, Dirichlet Series and Automorphic Forms [210], and in
H. Jacquet and R.P. Langlands, Automorphic Forms on GL(2) [86] for the theory
on GL(2); a treatment of the higher dimensional case, GL(r),r > 3, can be found
in H. Jacquet, Principal L-functions of the Linear Group [84] and in R. Godement
and H. Jacquet, Zeta Functions of Simple Algebras [69].

Chapter II. The reader is expected to be familiar with the basic theory of linear
representations of finite groups up to and including knowledge of Brauer’s Theorem
as contained for instance in J.-P. Serre, Linear Representations of Finite Groups
[164], §81-10.

For a deeper discussion of Weil and Weil-Deligne groups the reader can supple-
ment his study by consulting J. Tate, Number Theoretic Background, [187].

The ramification theory needed to understand the properties of conductors from
the point of view of the Herbrand distribution is given in C.J. Moreno, Advanced
Analytic Number Theory [127]. The definitions and elementary properties of the
absolute Weil group of a number field given in Chapter II, §2.3 are taken from the
report in A. Weil, Sur la theorie de corps de classes [211] and from the detailed
presentation in [212]. A modern exposition is also given in J. Tate’s article referred
to above [187].

The descriptive survey of the local Langlands correspondence for G L(n) given
in Chapter II, §15 uses standard terminology about group representations; for these
the reader can consult A. Kirillov, Elements of the Theory of Representations [101]
or the excellent Encyclopedic Dictionary of Mathematics, second edition, published
by the Mathematical Society of Japan. For a more detailed and rigorous presen-
tation the reader can consult the excellent treatment in A. Knapp, Representation
Theory of Semisimple Groups, [100].

Chapter III. The essential requirements for this chapter have been kept to a
minimum. An acquaintance with the classical Hadamard theory of entire functions
of order 1 and their associated Weierstrass products would be sufficient. This
material is found in L. Ahlfors, Complex Analysis [1], Chapter IV, §3, and Chapter
V, §61, 2 on harmonic and subharmonic functions. The principal results of the
chapter deal directly with the analytic properties of archimedean L-factors, also
known as gamma factors; for these the reader cannot do better than consult the
classical treatment in E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis [215], particularly Chapters XII and XIIL.

Chapter IV. Some acquaintance with the classical Mellin transform as well as
knowledge of the conditions under which its inverse exists is needed. The basic
theory can be deduced from that of the Fourier transform on the real line. The
latter is developed in Y. Katznelson, An Introduction to Harmonic Analysis [98],
Chapter VI (see also [115]). A more classical treatment of the Mellin transform is
in E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals [194].

The integral formulas for the Herbrand distribution used in this chapter are
discussed in great detail in the author’s monograph [127] already cited above,
particularly Chapter IX.
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Chapter V. Those properties of the gamma and related digamma functions, which

are not proved in this chapter, can be found in the treatise of Whittaker and Watson
[215].

Chapter VI. For an understanding of the geometric example in §1.1, the reader
should be acquainted with the elementary theory of zeta and L-functions of al-
gebraic curves over finite fields, particularly as it applies to elliptic curves. The
theory of these functions is explained in great detail in the author’s monograph
[127], Chapters IIT and IV. Some background on the origin and significance of the
arithmetic example in §1.1 can be acquired in J.-P. Serre, (i) A Course in Arith-
metic, [169] Chapter VII, and (ii) Abelian ¢-adic Representations, [165] Chapter I,
(see also G. H. Hardy, Twelve Lectures on the Work of Ramanujan [71], Chapter
XII'). In (ii) the reader will also find a useful but brief discussion of the relations

between equipartition of conjugacy classes, L-functions, and Chebotarev’s density
theorem.

The theory of irreducible complex linear representations of a locally compact
group G needed in Chapter VI, §1.2, is an extension of the classical theory for
compact groups. The reader can find an elementary introduction to the theory of
linear complex representations of compact Lie groups, including the unitary group
SU(n) and the Peter-Weyl theorem, in W. Fulton and J. Harris, Representation
Theory: A First Course [55], Chapter XX. The reader will also find an elementary
treatment of the Bohr compactification in Y. Katznelson, Harmonic analysis 98],
p. 192.

The theory of Eisenstein series for maximal parabolic subgroups of GL(n) used
in the proof of the Jacquet-Shalika non-vanishing theorem is a generalization of the
Hecke-Riemann method for proving functional equations and uses the properties of
theta series developed in Chapter I. The reader who is unfamiliar with these topics
or who wishes to acquire a working knowledge of the theory may want to consult
the following treatises on the general theory of Eisenstein series: (i) T. Kubota,
Elementary Theory of Fisenstein Series [102], (ii) A. Borel, Automorphic Forms
on SLy(R) [16], (iii) C. Moeglin and J.-L. Waldspurger, Spectral Decomposition
and FEisenstein Series [125], (iv) H.-Chandra, Automorphic Forms on Semisimple
Lie Groups [74]. A third alternative approach to the theory of Eisenstein series is
due to A. Selberg (for the group SL(3)) and uses the Fredholm theory of operator
equations. This has been developed independently by J. Bernstein (unpublished)
and in Shek-Tung Wong [216].

The reader who wishes to understand the technical aspects behind the powerful
Langlands-Shahidi method can consult the original exposition in F. Shahidi, Func-
tional Equation Satisfied by Certain L-Functions [178]. The approach there is quite
general and applies with minor modifications to Chevalley groups. The reader can
acquire the necessary knowledge of Whittaker models and Whittaker functions in J.
Shalika, The  Multiplicity ~One  Theorem  for GL, [170] and in
H. Jacquet, Fonctions de Whittaker associees auz groupes de Chevalley [85].

Finally we must describe the method followed for cross-references. Theorems
have been numbered continuously throughout each chapter; the same is true for
lemmas, for definitions, and for the numbered formulas. The few corollaries and
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propositions appearing in each chapter have not been numbered; all concepts, ex-
cept those that are assumed to be known, are listed in the index at the end of the
book, with reference to the page(s) where they appear. Formulas are numbered
for the sole purpose of reference. A reference given as “Chapter IV, §3, Theorem
37 refers to Theorem 3 in §3 of Chapter IV of this book; a reference such as “l16],
Chapter IV, §5” refers to Chapter IV, §5 in item [16] of the bibliography. A number
of parenthetical remarks appear throughout the text. For the most part, these are

meant to amplify some points in the foregoing discussion and can be skipped on a
first reading.



Introduction

Chapter I. The pioneering work of Euler on the zeta function and Dirichlet’s
subsequent introduction of L-functions provided a major conceptual advance in our
understanding of the set of all prime numbers. The identity

[ =31

P 1- p* n=1 L
which exhibits clearly the multiplicative and the additive properties of the ordinary
integers, is a cornerstone of the modern analytic theory of numbers, a theory which
evolved in the course of the last century into a vast and powerful enterprize. Within
this new framework, formal infinite products indexed by the primes, often called
“product formulas”, are intended to be the carriers of both algebraic and geometric
as well as analytic and spectral information. The genesis of these ideas can be
traced back to Hilbert’s formulation of his reciprocity law for the residue symbol,
as well as to the work done by Herbrand, Chevalley and Weil who forged the old
arithmetic concepts of unique factorization with the topological concepts present,
in Tychonoff’s Theorem on infinite products of locally compact spaces to produce
the basic tools of harmonic analysis on the groups of ideles and adeles.

On the analytic side, the study of zeta and L-functions dates back to one of
Riemann’s three proofs of the functional equation for ¢(s) - the one based on the
transformation formula for the elliptic theta function:

(Theta Transformation) Z e~ ntelinle — o Z Balear
nez nez

To gain a better understanding of the origin of these ideas, we recall that a proof
of the theta transformation formula is based on the solution to the following?.

“Initial value problem for heat conduction”:

On a closed linearly extended heat conductor (a wire for instance)
of length 1, find a solution u(z,t) to the heat equation

Ugpge — Ut = 0,
with continuous derivatives up to the second order for all values
of the variable x and for all t > 0, having a prescribed set of
1See Courant-Hilbert [37]: Methods of Mathematical Physics , vol. 11, p. 197

xiii



xiv INTRODUCTION

values
u(z,0) = Y(z) at t=0.

The function 1 (x) is assumed to be everywhere continuous and
bounded. It being assumed that both u and v as functions of
are periodic of period 1.

From physical considerations based on the superposition principle and the idea of
separation of variables one is lead to the two solutions

ol oo
’ — y —4n%%t o
u(z, 1) /Ow(f){1+226 cos 2mv(x g)}dg,

v=1

and

u(x,t):/olw(ﬁ){\/% i e‘(z_f_”)z/‘“}df.

Using an elementary lemma from the calculus of variations, the uniqueness of the
solution wu, itself a consequence of the energy estimate % fol u?dx < 0, leads imme-
diately to an equivalent form of the theta formula. The functional equation of the
Riemann zeta function in its usual form is then obtained by applying a suitable
Mellin transform to both sides of the theta identity.

New ideas in functional analysis and the rise of the theory of distributions made
it possible to develop the above elementary argument into a powerful technique
capable of new applications to two closely related branches of mathematics: to zeta
and L-functions and to infinite dimensional group representations.

Weil was the first to formulate in the local to global language of Tate’s Thesis
the relation between functional equations and the uniqueness of certain zeta distri-
butions. At the heart of his new interpretation is an old idea of Weil concerning
the determination of relative invariant measures, which had already appeared in his
classic work on integration over topological groups. The subsequent full develop-
ment of these ideas by Weil himself, and the light they shed on Siegel’s insights into
the Poisson Summation Formula, established beyond doubt the fruitfulness of this
new point of view. Chapter I is an elementary introduction to this circle of ideas.
It includes a detailed presentation of Tate’s Thesis together with Weil’s ideas about
distributions and zeta functions. In this framework, the local calculations at the
infinite prime are simply an elaboration of the well known results of Hadamard and
M. Riesz on homogeneous distributions. Our elementary presentation can serve as
an introduction to the theories of Sato concerning hyperfunctions defined by com-
plex powers of polynomials and zeta functions on prehomogeneous spaces and to
the theory of the Bernstein polynomial. We have also given a brief outline of the
Jacquet-Godement theory of principal L-functions which is the natural generaliza-
tion to GL(n) of Hecke’s L-functions viewed as automorphic objects on GL(1). The
principal results of Chapter I are those of Tate and Weil concerning the uniqueness
of local and global zeta distributions (Lemma 9, Theorem 22) and the functional
equation (Theorem 23).
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Chapter II. The essential nature of Artin’s reciprocity law, in Chevalley’s for-
mulation, is the identification of two seemingly distinct objects of interest in the
arithmetic of number fields:

(i) The Pontrjagin dual of the Galois group of the mazimal abelian extension of a
number field k,

(ii) The characters of finite order of the idele class group CL(k) = kx /k*,

together with the attendant functoriality properties describing the behavior of the
objects in (i) and (ii) under finite extensions (restriction) and the norm map (in-
duction).

As is well known, Artin constructed L-functions that generalize those of Dirich-
let in the non-abelian case. The main gluing ingredient being the Artin-Brauer
theorem, which describes how the characters of a finite group can be expressed as
linear combinations of those arising by induction from abelian groups. This, and
the fact that Hecke had constructed L-functions associated to arbitrary characters
of the idele class group, lead to the possibility of amalgamating these two types
of L-functions (Artin’s and Hecke’s) into a single analytic package. This challenge
was taken up by Weil, who based his construction on the existence and uniqueness
of the group extension

1 — CUK) — W(K/k) — Gal(K/k) — 1

associated to the fundamental class of class field theory. Weil’s construction of the
Artin-Hecke L-functions associated to finite dimensional representations of W(K/k)
requires a generalization of the Artin-Brauer theorem, which works for infinite non-
abelian locally compact groups like W (K /k). This theory was complemented by
work of Tamagawa on conductors and archimedean L-factors. The main results of
this theory are explained in Chapter II which includes the functional equation
for the L-functions of representations of W(K/k) (Lemma 3 and the Main Theo-
rem in §13). We also include a brief description of the Dwork-Langlands’ theorem
on the decomposition of the root number into local factors, a result of fundamen-
tal significance for the modern theory of automorphic L-functions on GL(n), and
the new non-abelian reciprocity laws of Langlands. A brief survey of the basic
Langlands functoriality principle as it applies to GL(n) is included. This principle
implies among other things that the Galois class of Artin-Hecke L-functions studied
in Chapter II coincides with a subset of the class of principal L-functions studied
in Chapter 1.

Chapter ITI. The finite primes in a number field, that is to say, those associated
to non-archimedean valuations, are to some extent determined by the well known
theorem of Wedderburn concerning the commutativity of finite division rings. In
contrast, the infinite primes in a number field, those corresponding to archimedean
valuations, are controlled by the fundamental theorem of Gelfand, which identifies
the field of complex numbers, up to topological isomorphism, as the only com-
plex commutative Banach division ring with identity. In this context, the main
characteristic property which distinguishes number fields from function fields of
positive characteristic is the existence of archimedean primes. An old saying in
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analytic number theory declares that the central questions will remain open until
we have gained a better understanding of the nature of all the primes including
the archimedean ones. It is in this spirit that the verification of the integrality
of L-functions remains a difficult problem intimately related to the presence of
gamma factors. A similar instance is the location and distribution of the zeros of
L-functions, a problem which rests ultimately on bounds for the local archimedeam
L-factors. An important result in this connection is Riemann’s product formula:

—s/21( S 1 1 / s
(Product Formula) ™ /F(ﬁ)l;ll_# — s(s—l)];-[(l_;)’

where the product on the right-hand side is taken over all the zeros of ((s) in the
strip 0 < Re(s) < 1, it being understood that p and 1 — p go together.

The study in depth of the archimedean primes and their local L-factors starts
with the well known characterization theorem of Bohr-Mollerup:

The Euler gamma function T'(s) is the only function defined for real s > 0, which
is positive, is 1 at s=1, satisfies the functional equation sI'(s)=I'(s + 1), and is
logarithmically convez, that is, log I'(s) is a convex function on the real line.

The uniqueness of the multiplication formula for the gamma function, viewed as an
identity between local L-factors, is the arithmetic manifestation of the basic fact
that the real archimedean prime admits a unique non-trivial extension: the complex
one. The analytic properties of the gamma function stem from the realization that
log |T'(s)| = Re logT'(s) is a harmonic function, a fact already used by Rademacher
(and to some extent also by Siegel) to obtain strong Phragmen-Lindelof estimates
for I'(s). This circle of ideas have applications to growth estimates for L-functions
with at most a finite number of poles.

The above remarks set the tone for the emphasis given to number fields in this
book. Chapter III is an exposition of these ideas, classically known as convexity
estimates. It includes estimates for the automorphic L-functions of principal type
on GL(n), as well as for the Artin-Hecke L-functions. The main results in this
chapter are Riemann’s Formula in Theorem 3 and the estimates in Theorems 14A,
14B, and 14C.

Chapter IV. The linearization of Riemann’s product formula, obtained by differ-
entiating the logarithms of both sides, leads to explicit relations between the primes
(finite and archimedean) and the non-trivial zeros of ((s). These relations, when
integrated against particular functions ®(s) over suitable domains in the s-plane
provide new identities that form the core of many applications of zeta functions to
questions about number fields. The internal symmetries possessed by these formu-
las seemed to have been first observed by Riemann himself, but were not developed
to any great extent until the middle of the last century when Guinand, then Del-
sarte, and finally Weil found generalizations which exhibited some kind of duality
between zeros and primes. In its modern formulation, Weil’s explicit formula is an
equality between two distributions, one associated to the zeros of an L-function,
and another - its “Fourier Dual”- associated to the primes. It has been a goal of
many number theorists, a goal which remains unfulfilled to this day, to formulate a
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“natural operator problem” whose solution has a well defined trace given by both
sides of the explicit formulas. An answer to this problem will certainly be accom-
panied with new insights into the dual relation between the primes and zeros of

¢(s).

There is no doubt that the explicit formulas have proven their worth in the
study of the distribution of prime numbers. They have also been very suggestive
in the study of group representations, as already noted by Selberg 2 in reference to
the trace formula for SL(2):

«

it has a rather striking analogy to certain formulas that
arise in analytic number theory from the zeta and L-functions of
algebraic number fields.”

An observation that lead him to the introduction of the Selberg zeta function.

Given the new work of Connes, which adds significance to the general notion
of trace, we expect that the explicit formulas will continue to exercise an ever
increasing role in the study of L-functions.

We remark that in the meantime it is possible, using an observation of Delsarte,
to calculate certain invariants of operators, e.g. the regularized expression

exp (D log p),
p

an expression that attaches a sense to the notion of determinant associated to
zeta and L-functions. Another important application of the explicit formulas, not
considered in this book, is Montgomery’s work on the Pair Correlation Hypothesis,
a deep insight on how the zeros of ((s) are jointly distributed. The work of Sarnak
and Rudnick has demonstrated that this is a very general phenomenon that applies
to the larger class of automorphic L-functions on GL(n). The explicit formulas of
Weil are studied in Chapter IV. The main results are Theorem 4A and Theorem
4B.

Chapter V. The diophantine properties of number fields are intimately connected
with the presence of ramification as was early realized by Kronecker. The well
known theorem of Minkowski:

|disc(k)| > 1, k#Q,

has a representation theoretic interpretation, as follows from a result of Hamburger,
to the effect that the trivial representation is the only Galois representation

r: Gal(Q*?/Q) — GL,(C),

which is unramified everywhere, including at the archimedean primes. Artin noted
that the zeta functions of simple algebras over number fields could be calculated
explicitly, and that their precise form, including the exact location of their poles,
could be used advantageously to prove the central theorem of class field theory:

2See A. Selberg, “Harmonic Analysis and Discontinuous Groups ...”, Indian Jour., p. 75.
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A simple algebra A over a number field k is trivial if and only if it is everywhere
unramified, i.e. if and only if A, = A ®y k, is trivial over the completions k, of k
at all the places.

In the opposite direction, as soon as ramification is allowed, as in the case of
quaternion algebras, the internal structure of the zeta function is more complicated
and the explicit form of the global root number, the holder of ramification infor-
mation, becomes relevant. Siegel, and in a more explicit way Stark, discovered
analytic formulas (relatives of the Poisson summation formula in the additive case
and variants of the explicit formulas in the multiplicative case) capable of exhibiting
the non-triviality of the discriminant of a simple algebra over a number field. The
explicit form of these analytic approaches to the study of ramification, which uses
increasingly more information about zeros and poles of zeta functions, was devel-
oped by Stark, Odlyzko, Serre and others. A noteworthy refinement of these ideas
involves the use of the explicit formulas; for example, Mestre has obtained lower
bounds for the conductor of certain automorphic L-functions whose archimedean
components are discrete series. We give in Chapter V a development of these
ideas. The results in this chapter are best viewed as contributions to arithmetic-
algebraic geometry in the sense of Arakelov, Faltings, and Szpiro. The principal
results are The Main Formula in §4, Lemmas 2 and 3 and Theorem 6.

Chapter VI. Norbert Wiener’s main contribution to analytic number theory was
his tauberian theorem which establishes the equivalence of prime number theorems
and the non-vanishing theorems for zeta functions. Whether one is interested in
the proof of a classical prime number theorem, or in one of its modern versions, e.g.
Chebotarev’s density theorem, Sato-Tate distributions for the eigenvalues of Hecke
operators, analytic proofs of strong multiplicity one, the Deligne or Katz-Sarnak
monodromy distribution theorems etc., the key problem in the analytic approach
is the proof of the non-vanishing of L-functions on the boundary of the region of
absolute convergence.

The most significant progress in this direction has been the generalization by
Deligne of the method of Hadamard and de la Vallée Poussin, which estab-
lishes non-vanishing for L-functions of a wide class that includes all the classical
ones (Riemann zeta, Dirichlet L-functions, Artin-Hecke, etc.) and has the poten-
tial for further applicability to arbitrary automorphic L-functions, once a weak
version of Langlands’ functoriality principle is available - analytic continuation of
the L-functions of Langlands L(s,r,m) for Re(s) > 1 for all finite dimensional
representations v of the L-group, except possibly for a simple pole at s = 1 when
=1

There is a second method for proving non-vanishing which rests on the analytic
properties of Eisenstein series. In one version it is based on the fact that the Eisen-
stein series E(s,g) of a maximal parabolic subgroup of a connected reductive al-
gebraic group G, as a function of the complex variable s, has analytic continuation
to the unitary axis R, and on the theory of the Whittaker functional, which
generalizes the theory of Fourier coefficients, and which for a non-trivial additive
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character ¢ of the unipotent group Na /Ny, gives a Fourier coefficient

( B L(s,n)
/N OB, gnn = (5,9.9) 7 T

where ¢(s, g,1) # 0 for s € iR. This in turn implies that
L(1+it,m) #0,

for all real values of £. An exposition of these ideas, including a brief introduction
to the powerful Langlands-Shahidi method is given in Chapter VI. In addition,
we have included a discussion of a little known result on the non-vanishing of (s)
based on elementary Hilbert space techniques. The reader will also find here a
brief discussion to the generalized Ramanujan conjecture, a very significant
problem, full of implications for the future development of analytic number the-
ory. Some exciting new results have been obtained in this area by Iwaniec and
Sarnak and their collaborators ([155]) by using methods akin to those presented in
Chapter IV.

There is another application of the theory of Eisenstein series on metaplec-
tic groups to non-vanishing theorems for L-functions, which is not presented in
this book, but because of its non-classical nature deserves to be mentioned in this
introductory paragraph. In its simplest manifestation, it arises from the Fourier
expansion of Eisenstein series of half integral weight on the Hecke group I'g(4N).
The Fourier coefficients turn out to be essentially Dirichlet L-functions associated
to quadratic extensions of the field of rational numbers. By a sieving procedure,
average information about these coefficients can be extracted from knowledge of the
singularities of the relevant Eisenstein series. In the special case of automorphic
L-functions L(s, ) on GL(2), a key fundamental idea is Waldspurger’s character-
ization of the values of L(%, 7 ® Xx) in terms of lifts 7 to the metaplectic cover of
GL(2). In one of the most striking applications of these ideas to number theory, it
has been possible to show the non-vanishing of the twisted Hasse-Weil zeta function
L(s, E ® x) of elliptic curves at the point s = 1, (the central point of the critical
line) for infinitely many quadratic characters x, as well as for the derivatives. In
contrast to the classical situation, this type of non-vanishing has direct applica-
tions to problems of diophantine analysis, a situation that is controlled by the well
known Birch and Swinnerton-Dyer conjecture. For an excellent exposition of the
ideas surrounding this type of non-vanishing, the reader should consult the survey
article by Bump, Friedberg, and Hoffstein in [24].

Appendix. The functional equation of an Artin L-function, which relates its
values at s and at 1 — s, contains an arithmetic factor, known as the root number,
whose behavior resembles that of a quadratic Gauss sum

Z 6_2‘””2/]\/ = i iN ¢ \/N

n€Z/NZ 1-+4

Hasse, who knew well the factorization of the Gaussian sum as a product of sim-
ilar sums with the integer N replaced by its prime power divisors, suggested that
the root number appearing in the functional equation of Artin L-functions should
have analogous factorizations into locally defined root numbers. Tate’s harmonic
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interpretation of Hecke’s functional equation using ideles established Hasse’s con-
jecture for abelian L-functions. For non-abelian L-functions, the factorization of
the root number into a product of local root numbers was achieved by Dwork up to
sign, and in full generality by Langlands. Greatly simplified analytic proofs were
subsequently produced by Deligne and by Tate.

Langlands’ original approach, itself a lengthy and intricate induction which
builds on earlier work of Dwork as well as on his own new Gauss sum identities
is noteworthy because in it the existence of local root numbers is established by
purely local techniques, suggestive of the existence of a non-abelian local class field
theory, a theme which is at the heart of Langlands’ Functoriality Principle.

The Appendix surveys in broad outline the two main components of the local
theory of root numbers: (a) a description of the form of the three main local root
number identities, (b) the determination of the corresponding three generators for
the kernel of Brauer induction for solvable groups. The main goal of this Appendix
is to introduce the reader to one of the most interesting and profound tools for the
study of L-functions and automorphic forms.
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