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Preface

Motivation

The latest texts on linear systems for engineering students have begun incorpo-
rating chapters on robust control using the state space approach to /1™ control
for lincar finite dimensional time-invariant systems. While the pedagogical and
computational advantages of this approach arc not to be underestimated, there
arc, in my opinion, some disadvantages. Among these disadvantages is the narrow
viewpoint that arises from the amputation of the finite dimensional time-invariant
case from the much more general theory that had been developed using frequency
domain methods.

The frequency domain, which occupied center stage for most of the develop-
ments of H™ control theory, presents a natural context for analysis and controller
synthesis for time-invariant linear systems, whether of finite or infinite dimen-
sions. A fundamental role was played in this theory by operator theoretic methods,
especially the theory of Toeplitz and skew-Toeplitz operators. The recent lecture
notes of Foias, Ozbay, and Tannenbaum (3] display the power of this theory by
constructing robust controllers for the problem of a flexible beam.

Although controller synthesis depends heavily on the special computational ad-
vantages of time-invariant systems and the relationship between H optimization
and classical interpolation methods, it turns out that the analysis is possible without
the assumption that the systems are time-invariant.

Why is this of importance? After all, even a complete theory of analysis does not
give a student the tools to design a robust stabilizing controller for the most simple
system y(t) = u(t). There is validity to this point of view, and it is adequately
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represented by the text mentioned previously. However, research activity in the.
last few years has shown that the study of time-varying systems using modern
mathematical methods has come into its own. This was a scientific necessity.
After all, many common physical systems are time-varying. In addition, the use
of sample-data methods for the study of lincar time-invariant sysltems requires
considering the analysis of time-varying systems. This has becn clearly illustrated
in the monograph of Chen and Francis [1].

Since this work was begun therc has been some progress by various rescarchers
in the development of a controller synthesis theory for time-varying systems. This
theory is far from satisfactory at this time, so it is inevitable that there will be
significant progress in this dircction. The intrinsic difficulty in such a theory is that
it must deal with infinite-dimensional infinite-multiplicity models. As my friend
and colleague Paul Fuhrmann has said to me many times, only a madman would
try to compute in the infinite-multiplicity case. However, the history of mankind
has shown that if there is one thing we are never short of, it is madmen.

About This Book

About the same time that Dick Sacks and 1 were completing our book Svstem
Theory: A Hilbert Space Approach, | was asked to referee paper by George Zames
with the rather complex title “Feedback and Optimal Sensitivity: Model Reference
Transformations, Multiplicative Seminorms, and Approximate Inverses.” | freely
admit that I had no inkling at the time that this paper would be the beginning of
a whole new direction in control theory and would, 1o a great extent, push aside
the least-squares optimal control theory presented in our book from an operator
theoretic point of view. This paper began what is now called ™ -control theory
and instituted a period of rich interaction between operator theory and optimal
control problems.

While the first papers in this subject dealt with the limited format of finite-
dimensional lincar time-invariant systems, it was quickly seen that, given an
operator theoretic formulation, the theory can be naturally stated in an infinite-
dimensional sctting. The operator theory of Sz-Nagy, Foias commutant lifting,
Nevanlinna-Pick interpolation, and Nehari problems of the sixties and seventics
suddenly became fundamental issues in optimal control thecory. Significant por-
tions of this thcory have been presented in an extremely clegant fashion in the
monographs of Vidyasagar, Francis, and Foias and Frazho [6], [4], [2].

During 1982 1 visited Bruce Francis, and we began discussing formulations
of the sensitivity problem in the operator theoretic framework for time-varying
systems that had been presented in the Feintuch-Sacks book. It turned out that this
framework was very appropriate and that the problems of H™ control could be
naturally formulated and solved for lincar time-varying systems. The key words
here were not H™ and commutant lifting-Nchari, but nest algebras and Arveson’s
distance formula. Since the idea was to look at lincar systems not pointwise but in a
ball, and the appropriate norm was not the Hilbert space norm of the least-squares
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theory but the operator norm, we called this theory “uniform optimal control.”

This book describes the theory of uniform optimal control and robustness of
linear time-varying systems using the operator theory framework of nest algebras.
Robustness is considered both in the operator norm and in the strongly related gap
metric. To make this theory work, a well-developed theory of internal stability was
essential, and fortunately this was developed in the last few years as well.

Even though no book on mathematics can be totally self-contained, we tried to at
least make the Hilbert space theory as complete as possible. We therefore open with
an introductory chapter on the geometry of Hilbert space and the basic notions of
operator theory. We have tried to minimize the use of topological notions, and ask
the reader’s indulgence for the occasional appearance of such terms as cardinality,
product topology, nets and weak-compactness. Chapter 2 presents a sequence of
more specialized topics chosen by their necessity in the development of the control
theory.

Chapters 3 and 4 deal with topics in operator theory as well. These topics, as
opposed to the mainly technical ones of Chapter 2, arc at the heart of the control
problems discussed in the book. Here we present a distance formula for operator
matrices, which leads to the formulae of Nehari and Arveson. Another fundamental
issue presented here is inner-outer factorization and spectral factorization in nest
algebras.

We begin our treatment of linear systems in Chapter 5, where the physical no-
tions of causality arc presented in the framework of extended spaces. Chapter 6
studies internal stability of feedback systems. The fundamental idea is to repre-
. sent a linear system as the range of a 2 x | operator matrix with causal entries.
Stabilization is seen to be cquivalent to left causal invertibility of such a matrix.
This is an appropriate formulation of what is usually called coprime factorization.
The classical Youla thecorem is presented in this fashion.

Chapter 7 deals with the fundamental problem of uniform optimal control: model
matching. We show that a large number of control problems can be presented in
this framework as 4-block problems, and we solve such problems.

In Chapters 8 through 10 we present a robust stabilization theory for lincar
time-varying systems. Chapter 8 deals with coprime factor perturbations and gives
formulas for balls of maximal radius that can be stabilized by a single controller
and for the structured norm of a system. In Chapter 9 we introduce the gap metric,
and Chapters 9 and 10 study robust stabilization in the gap metric. The results
of Chapters 8 through 10 are dependent on studying 2-block uniform control
problems. Chapter 11 presents the complete solution of the orthogonal embedding
problem for passive systems.

I have briefly outlined what is covered in this book. What is not covered is
a state-space approach to these problems. This has been described in an elegant
manner in the recent book of Halanay and lonescu [5], and the reader is referred
there to the complementary approach to the theory discussed here.

The idea for this book began in a graduate course that I gave on time-varying
systems in the spring of 1991. I am fairly sure that my notes for that course would
have remained just that if not for the events of January and February 1992. During
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what is now called “The Gulf War,” the State of Israel was attacked by Skud
missiles fired by Iraq. Because of the fear of chemical warheads we had to spend
long periods of time supervising our families in the vicinity of rooms that were
sealed to protect us from the gas. The atmosphere provided by the “mother of
all wars” was not conducive to doing new things, but that is where the project of
turning my lecture notes into the first draft of this book was begun.

This book is the cumulation of ideas of many people, from whom I learned and
with whom I worked on the subjects considered here. A few of those to whom |
am particularity grateful are George Zames, Alan Tannenbaum, Malcolm Smith,
Tryphon Georgiou, Pramod Khargonekar, Chandler Davis, and Peter Rosenthal.
Special thanks to my colleagues Paul Fuhrmann and Alexander Markus. I have
left Bruce Francis for special consideration. Without our Joint collaborations this
project may not have begun.

I have attempted, in the remarks at the end of cach chapter, to credit the results of
the chapter, whenever possible, to their discoverers. If the credits are not complete,
my apologies arc rendered to all those whosc role was not mentioned.

My wife Sherry and my children, Yonatan, Akiva, Nechama, Noam, and Udi,
have had to live with me before, during, and after the writing of this book. This
has not always been casy. I express, once again, my gratefulness and love for their
infinite patience.

It is appropriate to conclude with the words of Maimonides (Laws of Founda-
tions of the Torah, 2,1):

Now, what is the way that lcads to the love of Him and the reverence for Him?
When a person contemplates His great and wonderous acts and creations,
obtaining from them a glimpse of his wisdom, which is beyond compare
and infinite, he will promptly love and glorify Him, longing cxceedingly
to know the great Name of God, as David said: ‘My whole being thirsts
for God, the living God’ (Psalms, 42,3). And while pondering over these
very subjects he will simultancously recoil, startled, understanding that he
is a lowly obscure creature, as David said: ‘As I look up to the heavens thy
fingers made what is man that Thou shouldst think of him’ (Psalms 8,4-5).
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1
Basic Hilbert Space Theory

This chapter provides the sctting and framework for the rest of the book. It is
divided into three parts. The first part concerns itself with the geometry of Hilbert
space. The second part gives the basic results in operator theory needed throughout
this book, and the third part provides a short introduction to the theory of Banach
algebras.

1.1 Geometry of Hilbert Space

Let H be a complex linear space. A function (, ) : H x ' H — C is called an inner
product if

l.(x,x)>0forall x e Hand (x, x) =0 if and only if x = 0.
2. (a1 x; +a1xy, y) = o (x;, y) +as(xs, y) fora;, a: € C, x;, x2, vy € H.

3.(x, y) = (y, x).

The pair {H, (, )} is called an inner product space. From now on we will write
the space simply as H and assume that the function ( , ) is known.

We now define a function || || : H — R by ||x|| = (x..t)'i. Some simple
properties of ||x|| follow immediately from its definitions: '

l.]lx]l > 0forall x € H and ||x|| = 0 if and only if x = 0.

2. flexll = let] Ilx]l.
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Generally, if X is a (real or) complex linear space, a function ¢ : X — R is
called a seminorm on X if

1. p(x) > 0 forall x € H.
2. p(ax) = |a| p(x).
F.op(x +y) < o(x)+ @(y) forall x, y € H.

If, in addition, ¢(x) = 0 if and only if x = 0, then ¢ is called a norm. It is an
important fact that || || defines a norm on H. To verify this, it must be shown that
lx + v|| < |lx|l + |lv]l forall x, v € H. We will do this after introducing a few
morc basic notions.

Two vectors x, v € H arc orthogonal [notation: x L v]if (x, y) = 0. Given a sct
M C H, xis orthogonal to M [x L M]if (x.m) = 0 forallm € M. A set {x,}
1s an orthogonal set in H if (x,. xx) = 0, # B. A vector v € H is normalized if
| e=#

0 a#B -~

For a set {e, ) of vectors in 'H, \/,, ¢, is the closure of the subspace they generate.

x|l = 1. A set {e,) of vectors in 'H is orthonormal if (e, ¢p) =

Theorem 1.1.1 (Pythagorean theorem) Let (x| | be a finite orthogonal set in

‘H. Then i
| n M' "
|Zx. ]: S AR
[

[

Proof: |7 5[ = (00 (a0 20 a0 200 (x) = 0 kI m
Theorem 1.1.2 (Schwarz inequality) Forall x, vy € H,
[Ceo )l < Nl vl -
Proof: We can assume y # O and lete = T:_ Write x as
x=(x.e)e+ [x — (x,e)e]
and note that x — (x, ¢)e¢ L e. Then, by the Pythagorean theorem,

[l 12 li(x, e)ell* + llx — (x, e)ell?

> |l(x, e)el* = |(x.e)]*.
Thus [(x, )| < [|x||. Now just substitutc e = ﬁ |
Theorem 1.1.3 (triangle inequality) Forall x,y € H,
le + yll < llxll + Iyl

Proof:

llx + ylI?

x+y.x+y)=xx)+&x,y)+(y,x)+ (. y)
llxl2 + llyll® + 2Re(x, y)

lxl® + lyl? + 2Cx, y)l

I ll® + yl? + 20l lyll = (lxll + lyl)?. =

IAIA I
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It now follows that || || defines a norm on H. This norm allows us to define a
metric topology on H by means of the metric

plx,y) = lx = yl.

(That this is a metric follows immediately.) A sequence {x,} € H is said to converge
to x € H in the norm (or strongly) on H if

p(xn, x) =|lx, — x| — Oasn — oo.

We recall that H is complete if every Cauchy sequence in H converges in H. A
complete inner product space is called a Hilbert space. A subset M of H is called
a linear manifold if x, y € M, «, B € C implies ax + 8y € M. A closed linear
manifold is called a subspace. Thus a subspace of a Hilbert space is also a Hilbert
space.

Theorem 1.1.4 (, ) is continuous simultaneously in both variuables.
Proof: Suppose {x,} converges to x, and {y,} converges to y. Then

[(x,y) = (x,, ya)l [(x, y) = (x, va) + (X, ¥n) — (X0, ¥a)l

< [(x,y =yl + [(x = x4, ya)l
5 ”X” “,Vn - V” + ”( - 'rn” ”_Vn ” .

Now {[lv.[l} is a convergent sequence converging to || v since | ||y, |l = Iyl | <
[y, = vll. It thus follows that (x,, v,) converges to (x, y). &

Corollary 1.1.5 Ify € H, then { x| (x,y) = 0} is a subspace.

We have defined the norm in terms of the inner product on H. It is also possible
to recover the inner product from the norm.

Theorem 1.1.6 (polarization identity) Forullx,y € H,
(. y) = §llx + ylI? = llx = yI* +ille + iyl =il = iyll*) .
Proof: Compute. B
Another identity that is quite useful is the parallelogram law.
Theorem 1.1.7 Forx,y € H,
e + 1% + llx = yI* = 201 + 1y 1.
Proof: Compute. |

Our next task is to characterize the continuous linear functionals on H. We begin
with a result about convex sets in H.

Theorem 1.1.8 Let K be a closed convex subset of H, and x & K. Then there
exists a unique vector k € K such that | x — k|| < ||x —k'|| for all k" in K different

from k.



