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Preface

The study of matrices occupies a singular place within mathematics. It
is still an area of active research, and it is used by every mathematician
and by many scientists working in various specialities. Several examples
illustrate its versatility:

Scientific computing libraries began growing around matrix calculus.
As a matter of fact, the discretization of partial differential operators
is an endless source of linear finite-dimensional problems.

At a discrete level, the maximum principle is related to nonnegative
matrices.

Control theory and stabilization of systems with finitely many degrees
of freedom involve spectral analysis of matrices.

The discrete Fourier transform, including the fast Fourier transform,
makes use of Toeplitz matrices.

Statistics is widely based on correlation matrices.
The generalized inverse is invoived in least-squares approximation.

Symmetric matrices are inertia, deformation, or viscous tensors in
continuum mechanics.

Markov processes involve stochastic or bistochastic matrices.

Graphs can be described in a useful way by square matrices.



viil Preface

e Quantum chemistry is intimately related to matrix groups and their
representations.

e The case of quantum mechanics is especially interesting: Observables
are Hermitian operators, their eigenvalues are energy levels. In the
early years, quantum mechanics was called “mechanics of matrices,”
and it has now given rise to the development of the theory of large
random matrices. See [23] for a thorough account of this fashionable
topic.

This text was conceived during the years 1998-2001, on the occasion of
a course that I taught at the Ecole Normale Supérieure de Lyon. As such,
every result is accompanied by a detailed proof. During this course I tried
to investigate all the principal mathematical aspects of matrices: algebraic,
geometric, and analytic.

In some sense, this is not a specialized book. For instance, it is not as
detailed as [19] concerning numerics, or as [35] on eigenvalue problems,
or as [21] about Weyl-type inequalities. But it covers, at a slightly higher
than basic level, all these aspects, and is therefore well suited for a gradu-
ate program. Students attracted by more advanced material will find one
or two deeper results in each chapter but the first one, given with full
proofs. They will also find further information in about the half of the
170 exercises. The solutions for exercises are available on the author’s site
http://www.umpa.ens-lyon.fr/ ~serre/exercises.pdf.

This book is organized into ten chapters. The first three contain the
basics of matrix theory and should be known by almost every graduate
student in any mathematical field. The other parts can be read more or
less independently of each other. However, exercises in a given chapter
sometimes refer to the material introduced in another one.

This text was first published in French by Masson (Paris) in 2000, under
the title Les Matrices: théorie et pratique. 1 have taken the opportunity
during the translation process to correct typos and errors, to index a list
of symbols, to rewrite some unclear paragraphs, and to add a modest
amount of material and exercises. In particular, I added three sections,
concerning alternate matrices, the singular value decomposition, and the
Moore-Penrose generalized inverse. Therefore, this edition differs from the
French one by about 10 percent of the contents.

Acknowledgments. Many thanks to the Ecole Normale Supérieure de Lyon
and to my colleagues who have had to put up with my talking to them
so often about matrices. Special thanks to Sylvie Benzoni for her constant
interest and useful comments.

Lyon, France Denis Serre
December 2001
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1
Elementary Theory

1.1 Basics

1.1.1 Vectors and Scalars

Fields. Let (K, +,-) be a field. It could be IR, the field of real numbers, C'
(complex numbers), or, more rarely, @ (rational numbers). Other choices
are possible, of course. The elements of K are called scalars.

Given a field k, one may build larger fields containing k: algebraic ex-
tensions k(ajy, ... .a,), fields of rational fractions k(X1, ..., X,), fields of
formal power series k[[X1, ..., X,]]. Since they are rarely used in this book.
we do not define them and let the reader consult his or her favorite textbook
on abstract algebra.

The digits 0 and 1 have the usual meaning in a field K, with 0 + x =
1-z = z. Let us consider the subring Z1, composed of all sums (possibly
empty) of the form +(1 + ---+ 1). Then Z1 is isomorphic to either Z or
to a field Z /pZ. In the latter case, p is a prime number, and we call it the
characteristic of K. In the former case, K is said to have characteristic 0.

Vector spaces. Let (E,+) be a commutative group. Since E is usually
not a subset of K, it is an abuse of notation that we use + for the additive
laws of both E and K. Finally, let

(a,z) +— ax,
KxE — E,
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be a map such that
(a+b)x =ar+br, alr+y)=ax+ ay.

One says that E is a vector space over K (one often speaks of a K-vector
space) if moreover,

a(br) = (ab)x, lx =um,

hold for all a,b € K and x € E. The elements of F are called vectors. In a
vector space one always has 0z = 0 (more precisely, Oxxz = 0g).

When P,QQ C K and F,G C FE, one denotes by PQ (respectively P +
Q, F+G, PF) the set of products pq as (p, q) ranges over P x Q (respectively
p+q. f+g,pf asp,q, f,grange over P,Q, F,G). A subgroup (F,+) of (E, +)
that is stable under multiplication by scalars, i.e., such that KF C F| is
again a K-vector space. One says that it is a linear subspace of E, or just a
subspace. Observe that F, as a subgroup, is nonempty, since it contains Og.
The intersection of any family of linear subspaces is a linear subspace. The
sum F + G of two linear subspaces is again a linear subspace. The trivial
formula (F + G) + H = F + (G + H) allows us to define unambiguously
F + G + H and, by induction, the sum of any finite family of subsets of E.
When these subsets are linear subspaces, their sum is also a linear subspace.

Let I be a set. One denotes by K’ the set of maps a = (a;)ies : I — K
where only finitely many of the a;’s are nonzero. This set is naturally
endowed with a K-vector space structure, by the addition and product
laws

(a+b)i = a,-+bi, ()\a)i = /\(1,'.

Let E be a vector space and let i — f; be a map from I to E. A linear
combination of (f;)ies is a sum
2_aifi

iel
where the a;’s are scalars, only finitely many of which are nonzero (in other
words, (a;)ie; € K'). This sum involves only finitely many terms. It is a
vector of E. The family (f;)ies is free if every linear combination but the
trivial one (when all coefficients are zero) is nonzero. It is a generating
family if every vector of F is a linear combination of its elements. In other
words, (f;)ier is free (respectively generating) if the map

K' — E,
(ai)iel = Za'ifiy
el

is injective (respectively onto). Last, one says that (f;)ic; is a basis of E if
it is free and generating. In that case, the above map is bijective, and it is
actually an isomorphism between vector spaces.
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If G C E, one often identifies G and the associated family (g)geg- The set
G of linear combinations of elements of G is a linear subspace E, called the
linear subspace spanned by G. It is the smallest linear subspace E containing
G, equal to the intersection of all linear subspaces containing G. The subset
G is generating when G = E.

One can prove that every K-vector space admits at least one basis. In
the most general setting, this is a consequence of the axiom of choice.
All the bases of E have the same cardinality, which is therefore called the
dimension of E, denoted by dim E. The dimension is an upper (respectively
a lower) bound for the cardinality of free (respectively generating) families.
In this book we shall only use finite-dimensional vector spaces. If F, G are
two linear subspaces of F, the following formula holds:

dim F +dim G = dim F NG + dim(F + G).

If FNG = {0}, one writes F' & G instead of F + G, and one says that F
and G are in direct sum. One has then

dimF & G =dim F +dimG.

Given a set I, the family (e');c;, defined by
o _ [0 j#i
(e)-"{ L =i,

is a basis of K/, called the canonical basis. The dimension of K/ is therefore
equal to the cardinality of I.

In a vector space, every generating family contains at least one basis of
E. Similarly, given a free family, it is contained in at least one basis of E.
This is the incomplete basis theorem.

Let L be a field and K a subfield of L. If F'is an L-vector space, then F
is also a K-vector space. As a matter of fact, L is itself a K-vector space,
and one has

dimyg F = dim;, F - dimg L.

The most common example (the only one that we shall consider) is K = IR,
L = C, for which we have

dimp F = 2dim¢ F.

Conversely, if G is an IR-vector space, one builds its complezification G€
as follows:

G =G xaG,

with the induced structure of an additive group. An element (x,y) of G€
is also denoted z + iy. One defines multiplication by a complex number by

(A=a+1ib,z=2x+1iy) — Az := (az — by, ay + bx).
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One verifies easily that G€ is a C-vector space, with
dime G€ = dimp G.
Furthermore, G may be identified with an IR-linear subspace of G¢ by
x — (x,0).

Under this identification, one has G€ = G +iG. In a more general setting,
one may consider two fields K and L with K C L, instead of IR and €, but
the construction of G is more delicate and involves the notion of tensor
product. We shall not use it in this book.

One says that a polynomial P € L[X] splits over L if it can be written
as a product of the form

.
(J,H(X —a;)", aa; €L, re€IN,n;,€N".
i=1

Such a factorization is unique, up to the order of the factors. A field L in
which every nonconstant polynomial P € L[X] admits a root, or equiva-
lently in which every polynomial P € L[ X] splits, is algebraically closed. If
the field K’ contains the field K and if every polynomial P € K[X] admits
aroot in K', then the set of roots in A’ of polynomials in K[X] is an alge-
braically closed field that contains K, and it is the smallest such field. One
calls K’ the algebraic closure of K. Every field K admits an algebraic clo-
sure, unique up to isomorphism, denoted by K. The fundamental theorem
of algebra asserts that IR = €. The algebraic closure of @, for instance,
is the set of algebraic complex numbers, meaning that they are roots of
polynomials P € Z[X].

1.1.2 Matrices

Let K be a field. If n,m > 1, a matrix of size n x m with entries in K is a
map from {1,...,n} x {1,...,m} with values in K. One represents it as
an array with n rows and m columns, an element of K (an entry) at each
point of intersection of a row an a column. In general, if M is the name of
the matrix, one denotes by m;; the element at the intersection of the ith
row and the jth column. One has therefore

mi1 ... Mim
M =
Mp1  ooo Mpm

which one also writes

In particular circumstances (extraction of matrices or minors, for example)
the rows and the columns can be numbered in a different way, using non-
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consecutive numbers. One needs only two finite sets, one for indexing the
rows, the other for indexing the columns.

The set of matrices of size n x m with entries in K is denoted by
M, xm(K). It is an additive group, where M + A’ denotes the matrix M"
whose entries are given by m[; = m;; +m;;. One defines likewise multipli-
cation by a scalar a € K. The matrix M’ := aM is defined by m}; = am;;.
One has the formulas a(bM) = (ab)M, a(M + M') = (aM) + (aM’), and
(a+b)M = (aM) + (bM), which endow M,, «,,(K) with a K-vector space
structure. The zero matrix is denoted by 0, or 0,,,,, when one needs to avoid
ambiguity.

When m = n, one writes simply M,,(K) instead of M,,«,(K), and 0,
instead of 0,,,,. The matrices of sizes n x n are called square matrices. One
writes I,, for the identity matrix, defined by

) 00 if i j-
5 — 5 7.
”"J 5i { 1, if 1 = _]

In other words,

1 0 0
Iu: 0

: i -0

0 - 0 1

The identity matrix is a special case of a permutation matriz. which are
square matrices having exactly one nonzero entry in each row and each
column, that entry being a 1. In other words, a permutation matrix A/
reads

59’(})

mij = 0;

for some permutation o € S,,.

A square matrix for which ¢ < j implies m;; = 0 is called a lower
triangular matrix. It is upper triangular if ¢ > j implies m;; = 0. It is
strictly upper triangular if 7 > j implies m;; = 0. Last, it is diagonal if m;;
vanishes for every pair (i, 7) such that 7 # j. In particular, given n scalars
dy,...,d, € K, one denotes by diag(d, ... ,d,) the diagonal matrix whose
diagonal term m;; equals d; for every index i.

When m = 1, a matrix M of size n x 1 is called a column vector. One
identifies it with the vector of K™ whose ith coordinate in the canonical
basis is m;;. This identification is an isomorphism between M,, 1 (A’) and
K™. Likewise, the matrices of size 1 x m are called row vectors.

A matrix M € M,,«,,(K) may be viewed as the ordered list of its
columns MU) (1 < j < m). The dimension of the linear subspace spanned
by the M7) in K™ is called the rank of M and denoted by rk Af.



