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PREFACE

This book presents a unified macroscopic theory of electromagnetic
waves in accordance with the principle of special relativity from the point of
view of the form invariance of the Maxwell equations and the constitutive
relations. Great emphasis is placed on the fundamental importance of the
k vector in electromagnetic wave theory. We introduce a fundamental unit
K, = 2m meter~! for the spatial frequency, which is cycle per meter in spa-
tial variation. This is similar to the fundamental unit for temporal frequency
Hz, which is cycle per second in time variation. The unit K, is directly pro-
portional to the unit Hz; one K, in spatial frequency corresponds to 300
MHz in temporal frequency.

This is a textbook on electromagnetic wave theory, and topics essential
to the understanding of electromagnetic waves are selected and presented.
Chapter 1 presents fundamental laws and equations for electromagnetic the-
ory. Chapter 2 is devoted to the treatment of transmission line theory. Time-
harmonic fields are introduced in Chapter 3 to study propagation, reflection,
transmission, guidance, and resonance of electromagnetic waves. Starting
with Cerenkov radiation, we study radiation and antenna theory in Chapter
4. Chapter 5 then elaborates on the various theorems and limiting cases of
Maxwell’s theory important to the study of electromagnetic wave behavior.
Scattering by spheres, cylinders, rough surfaces, and volume inhomogeneities
are treated in Chapter 6. In Chapter 7, we present Maxwell’s theory from
the point of view of Lorentz covariance in accordance with the principle of
special relativity.

The problem section at the end of each section provides useful exercise
and applications. The various topics in the book can be taught indepen-
dently, and the material is organized in the order of increasing complexity
in mathematical techniques and conceptual abstraction and sophistication.
This book has been used in several undergraduate and graduate courses that
I have been teaching at the Massachusetts Institute of Technology. The un-
dergraduate course covers Chapters 1 and 2 without topic 1.2A and Sections
1.3B, 1.8 and 1.9. The introductory graduate course covers Chapters 1, 3, 4
and parts of Chapter 5. The rest of the book is used for advanced graduate
courses.
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3.1 Time-Harmonic Fields 305

3.1 Time-Harmonic Fields

For electromagnetic waves of a particular frequency in the steady state, the
fields are time-harmonic and are known as monochromatic waves or contin-
uous waves (CW). The CW cases are important for three reasons: (i) the
CW assumption can be used to eliminate the time dependence in the Max-
well equations and thus considerably simplify the mathematics; (ii) once
the CW case is solved and a sound understanding is developed for the
frequency-domain phenomena, Fourier theory can be applied to study the
time-domain phenomena; (iii) CW representation covers the whole spectrum
of electromagnetic waves. Clearly, a thorough understanding of CW or the
time-harmonic case is essential in the study of all electromagnetic wave phe-
nomena.

For a time-harmonic field with angular frequency w, we let
E(7,t) = Re{E(F) e ™'} (3.1.1)

where Re denotes the real part of a complex quantity and e~**! denotes the
convention of time dependence used in the rest of this book. To convert to the
previous convention of e/“! | simply replace i by —j . The current convention
of e~*! facilitates integration on the upper half of a complex plane and
connects to conventions used in literature on physical sciences. The complex
electric field vector E(7) is a function of position only and independent
of time. In this book we do not use different symbols to distinguish real
quantities such as E(7,t) in the time domain and complex quantities such
as E(7) in the frequency domain. Their meanings should be clear from
the context. In case of possible ambiguity, we shall explicitly indicate the
complex field quantities to be functions of ¥ only and the real time-domain
fields to be functions of both 7 and t.

A. Maxwell Equations for Time-Harmonic Fields

Similar definitions apply to other field quantities with E replaced by H, B,
D, J, and p in (3.1.1). Substituting E(7,t) and B(7,t) in Faraday’s law
(1.1.2) we obtain

Re{[V x E(F) — iwB(F)]le ™"} =0 (3.1.2)

This equation is true for all time t.

Note: When the real part of the complex quantity in the square brackets
multiplied by all values of e ™' is equal to zero, the complex quantity



