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PREFACE

Despite recent advances in aerodynamic research for the flight
regime lying far beyond the so-called sonic barrier, there remain
many stubborn problems connected with those phenomena that occur
in the flight range straddling the speed of sound. This transonic region
continues to engage the attention of those individuals charged with
the design of high speed vehicles: subsonic jets which fly at the brink
of the transonic region, and supersonic aircraft and missiles for which
passage through the sonic barrier is a critical aspect of flight. -

Interest in transonic phenomena is not confined to the jet transport
industry. Because of high speed turbines, sonic nozzles, low-measuring
instruments, and other test apparatus based on the principles of transonic
flow, this topic is one of widespread interest in fluid mechanics in
general.

A by-product of the substantial research effort to resolve the difficulties
which abound in this field is the large number of published papers.
Although other summary texts have appeared recently in response
to the need to organize and digest the voluminous material published
in scattered journal articles, the present authors have taken a distinctly
different approach in presenting their treatment of the subject.

The main objective pursued has been the unification of this particular
field of fluid dynamics by organizing it into a sequential, logical develop-
ment, in order to cover all the potentially useful approximations that
have been suggested for the governing equation of the flow, and which
would reveal the interconnections existing between these several
approaches. A great deal of attention has been directed toward clarification
of basic concepts; in particular, much effort has been expended on
explanation of how the shocks of various sorts are generated in the flow,
while generous amounts of space have been devoted to the related
question of whether there exist shock-free regular (i.e., mathematically
well-behaved) transonic flows about airfoil shapes of the continuously
turning (i.e., conventional) variety.

Most emphasis has been placed on the theoretical rather than the
engineering aspects of the subject. In every instance, however, where
any light would be shed on the questions under study by citation of
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Vi PREFACE

the pertinent experimental results, such comparisons between theory
and experiment have been made. In this way the text has acquired a
distinctly practical and concrete tenor despite its mathematical
orientation.

Having decided to compile something more than a cursory survey,
it became evident to the authors in short order that many topics would
have to be dropped or scarcely mentioned, even though they might
be of special value for certain technical applications; as explained more
fully in Section 12 of Chapter VI, however, if such slighted subjects
were to be included it would mean that other penalties would be incurred,
so that the compromise usually resorted to has been to present only those
topics which would be representative of several other particular but
related problems.

In our opinion, therefore, the selection of material which was
incorporated into the treatise thus evolved ought to have appeal both to
mathematicians and to practicing aerodynamicists. This serving of dual
masters was not easily achieved, as more than once was brought home to
the authors rather painfully when a particularly exasperating struggle
was necessary in order to produce a statement of concept or of principle
which would be clear and acceptable to both groups of readers. What
could be taken for granted by one audience might not be at all familiar
to those with different backgrounds, so that some worrisome and difficult
choices as to what to include and what to exclude had to be threshed out.
It is our conviction, however, that this conscious need to serve the
needs of more than a single group of readers has forced us to produce
a clearer and more meaningful exposition.

Although the text was a joint undertaking, the responsibility for
producing the sections was individually assigned; since, however, there
was constant and ample communication between the authors at all
times it is believed that maximum integration of the individual contribu-
tions has been realized. The mathematical fundamentals given in
Chapter III, together with the Appendix to Chapter IIl concerned
with the properties of the hypergeometric functions, was prepared
by F. G. Tricomi, while the other chapters were produced by C. Ferrari.

We want to take this opportunity to express our thanks, above all,
to the National Research Council of Italy and to its Mathematical
Manuscripts Committee for the honor they have bestowed upon us
by originally commissioning this book as part of the series they
have sponsored.
Torins, Lbary C. FERRARI
F. G. Tricomi
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CIIAPTER T

FUNDAMENTAL PRINCIPLES

Introduction

The medium that is to be considered in this study is taken to have the
following properties:

(a) It is an ideal fluid (in the hydrodynamic sense), which means
that its viscosity and thermal conductivity are both zero. Under this
hypothesis, there can be no transport of momentum or of heat because
of velocity gradients or temperature gradients. This supposition is
adhered to even though there may be present some discontinuities of
either velocity or temperature along certain lines (in two-dimensional
flows) or at specific surfaces such as arise when shocks are created in the
supersonic part of the stream. Because of this assumption, the entire
subject of boundary-layer influerices on the inviscid main flow is being
avoided. M (L

It must be acknowledged that such viscous and thermal transport
processes often can play a decisive role in influencing the behavior of
actual flows. It should be made clear at the beginning of this discussion,
however, that the principal object of this text is to describe and analyze
those special features of flows which are attributable directly to the
transonic nature of the flow phenomena, divorced from any essential
dependence upon viscous factors.

(b) The medium 1is a continuum, which implies that the molecular
constitution of the fluid exerts no influence on the fluid mechanical
processes under consideration.

(c) The medium is homogeneous, meaning that the physical state
of any element of the fluid is determined completely, without the need
of specifying any other parameters, once the pressure, density, and
temperature are known.

(d) The fluid is a per ¢t gas (in the thermodynamic sense), which
amounts to the same © 1g as asserting that the three state variables
(p, pressure; p, specific mass, more commonly called the density; and



2 FUNDAMENTAL PRINCIPLES [Ch.1

T, absolute temperature) satisfy at all times the fundamental equation
of state

P :,,%T:g?ﬂ‘ (thus % — RJm)

where R is the universal gas constant and m represents 1 mole of the
substance under consideration. A mole is the gram molecular weight of
the substance, i.e., it is a mass numerically equal to the molecular weight.
The gas constant has the generally accepted value of R = 8.31432
joules (°K)~! mole~1.

(e) The flow is transonic. The term “transonic” designates flows in
which the velocity in one region is subsonic, whereas in the remaining
part of the flow field it is supersonic. These two regions of the flow are
separated from each other by lines (in the two-dimensional case) or by
surfaces where the velocity is equal to the velocity of sound; these
interfaces are called sonic lines or sonic surfaces. In some instances,
the velocity could exhibit a discontinuity at the boundary between the
two regions; such a discontinuity constitutes a shock wave.

It is being assumed in this treaiment that flow fields that are completely
subsonic or completely supersonic have properties that are adequately
described in standard texts and, thus, should need no further elaboration
here. On occasion, reference will be made to such wholly subsonic or
wholly supersonic flows, but only in order to point out how they differ
in distinctive ways from the situations met when dealing with the
transonic regime.

Furthermore, only a restricted class out of the totality of all types of
transonic flow is to be examined. The kinds of transonic flow with
which this study will be concerned are to be limited to those cases for
which the maximum value of the local Mach number is only slightly
past unity [i.e., the flows must obey the stipulation that M (everywhere)
< M., where M has a value of about 1.3]. This requirement
specifically excludes from consideration any high Mach number flows,
that is, any flow for which the Mach number M, taken on by the un-
disturbed freestream at an infinite distance away from any disturbing
obstacle is greater than the specified bounding value of 1.3.

The decision to exclude this latter sort of problem from consideration
in this analysis is unavoidable, because the two situations are very
dissimilar and require completely different lines of approach. Although
there is much current interest in cases where a transonic flow is embedded
within a generally hypersonic flow field, for which M, > 1, such
combined flows do not allow the principal features of transonic flows
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to be highlighted and studied with most clarity. If research is to be
undertaken with the object of extending into the hypersonic realm the
investigations to be made here concerning purely transonic flows, it
will be necessary to rescind hypotheses (c) and (d) and to contend with
phenomena that are much more complex and less amenable to mathe-
matical description.

1. Equations of Motion; Energy and Entropy Distributions

The equations and general theorems of gas dynamics which are
fundamental to the study of the kinds of flow to be examined in what
follows have been derived and discussed at length in a large number of
well-known texts. For example, the mechanics of gaseous flows is
thoroughly treated in several books [I-3].! As a convenience to the
reader, however, and to aid in establishing a clear set of definitions
and in building up a consistent set of principles upon which subsequent
work may be firmly based, it is intended in this chapter to present a
resume of such background material. Although a few critical steps in the
derivations will be indicated, no concerted attempt will be made to
prove the laws or to justify the selection of the nomenclature.

The general equations that have to be satisfied in all those areas of the
flow where the pressure and density are continuous are as follows:

(a) The continuity equation. This law expresses the principle of
conservation of mass for the fluid taking part in the motion under
examination. The customary formulation for the law is

dplet + div (pq) = 0 )

where q represents the vector velocity? at any point in the field of flow,
and ¢ is the time variable.

(b) The momentum equation. If it is assumed that all of the external
forces acting on the flow are derivable from a potential Q(P, #), then the
forces and accelerations are related by means of the equation

1 _dq _ 99  dq
a 1
:—5+§gradq2+r0tq><q (2)

where P is any arbitrary general point in the flow field.

1 The numbers enclosed in brackets refer to the references listed at the end of each
chapter.

2 Vector quantities are represented by bold-face type, whereas their scalar magnitudes
are indicated by the corresponding light-faced type.
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The scalar equations that may be written out by taking the components
of the several vector quantities appearing in Eq. (2) along the directions
of the individual coordinate axes (where spatial locations have been
referred to an arbitrarily selected system of orthogonal curvilinear
coordinates) are called the Euler equations for the motion.

(¢c) The energy equation. Inasmuch as the gaseous medium being
examined here is considered to be thermodynamically perfect, the energy
equation is simply

dn  1dp
@ pd 3)

where % is the enthalpy per unit mass. It is better practice to reveal the
explicit nature of this derivative by noting that, when f denotes a scalar
quantity connected with a specific particle taking part in the fluid
motion, then df/dt represents the material (or substantial) derivative
of the quantity f. Specifically,

a _of

£ 7E+q-gradf.

With a slight rearrangement of terms, Eq. (3) may be combined with
Egs. (1) and (2) to result in the basic governing equations ef motion:

d Loy oy_1ép o2  dE _ —p .
wh ¢ D=y S, dva )

where the latter relation is obtained by making use of the expression
connecting enthalpy and internal energy, E, as given by

E=h—pp~L

If S is used to represent the entropy, then this quantity may be
defined by the equation

T dS = dE -+ pd(1/p).

From Egs. (4) and (1), it may be decided immediately that under
present restrictions
dS|dt — 0. (5)

This result may be interpreted to mean that along every path followed
by any particle in the flow the entropy is constant, provided merely
that the paths traced out by the fluid particles are contained within
that part of the flow field throughout which the density and pressure
vary only in a continuous manner.
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Inasmuch as it must be true, from what has been postulated previously,
that

ptgradp =grad h — T grad S

and if, furthermore, the definition of the total energy, H, is introduced
by use of the equation

H=h41l¢—Q,

then it will be found by substitution into Eq. (2) that
9q
TgradS:gradH—l—rothq—l—ﬁ. (6)

This relation prescribes just how the entropy is distributed throughout
the flow field. When the flow is steady (so that there is no variation of
the local velocities within any time interval, i.e., so that one may take
oq/ot = 0), then this result reduces to the simpler form

q X rotq = grad H — T grad S, (69

which is known as Crocco’s equation [4].

2. The Lagrange-Thompson Theorem

The circulation I" around any closed path / moving with the fluid is
represented by the integral

F:fﬁlq-(dm),

where the symbol fl denotes the line integral computed around the

closed path / and ds indicates an infinitesimal element of distance taken
along /, whereas « stands for the unit vector lying along the direction
of the tangent to / at the point where ds 1s located. Thus, the rate of
change of the circulation is

dr ¢ dq d
= ldt.(dsr)+5fﬁl 2 (x ds).

 The second of these integrals vanishes, however, because it may be
readily recognized that

d(xds) @ (1

— - 2
at s 29)‘1“'
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The first of the integrals on the right-hand side of the equation for
the rate of change of the circulation may be called the circulation of the
acceleration, taken around the closed path /. By reference back to the

momentum equation, Eq. (I.1.2),% it is clear that this circulation of the
acceleration reduces to just

dq . grad p
3€l e (ds ) = ﬁffl—P—-'vds.

Furthermore, since (dp/p) + T dS = dh it follows that

dljdt = ff (T dS — dh) = ff T dS. (1)

If it so happens that S is constant throughout the entire field of flow,
then the motion is said to be uniformly isentropic, or, better yet, the
specific term ‘‘homentropic” may be applied. Under this supposition,
it is obvious from Eq. (1) that dI'/dt = 0 or, thus, the circulation
remains constant as time progresses. This result embodies the Lagrange-
Thompson theorem, which states, “‘If the flow is homentropic, then the

circulation taken around any moving closed curve in the flow is constant
as time proceeds.”

3. Flows Starting from Rest, Steady Motion,
the Bernoulli Equation, and Other Fundamentals

A powerful theorem concerning flows starting from rest may be
deduced from Eq. (I.1.5) when used in conjunction with the hypothesis
that there shall be no surfaces of discontinuity in pressure or density
at any time in the flow. If a flow starting from rest is defined as one for
which ¢ = 0 and T is constant for t = 0, it is easily deduced, on the
basis of the stipulations now made, that

S(P, t) = const. (1)

This conclusion means that the flow is homentropic at every point P
in the flow field for all subsequent time.

3 In order to cite formulas in this text, the notation Eq. (NV.i.n) has been adopted to
indicate that reference is being made to Chapter IV, Section 7, and equation n of the sequen-
tially numbered set of relations to be found there. If, however, the formula to which
attention is called is contained within the same section of the text as that in which the
citation is made, then the simple notation Eq. (n) is used.
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By appeal to the Lagrange—Thompson theorem under these circum-
stances where the flow starts from rest, it follows that I' = const = 0
for any moving closed curve, because I" = 0 at the start of the motion,
when ¢ = 0.

According to Stokes’ theorem, the circulation may be computed by
the formula

F:ff n . rot q do

where the double integral is to be extended over the entire arbitrary
surface o, which has the closed contour / as a boundary. The symbol
n, as usual, denotes the unit vector taken in the direction of the outward
normal to the surface o at any generic point on it. Since the supposition
that the flow has started from rest has now led to the condition that

ff nerotqdo =0

for any arbitrary surface o, the conclusion is inescapable that at all
locations

rotq = 0, (2)

or it is permissible to make the summary statement that a continuous
flow starting from rest will remain free of vorticity thereafter.
If, furthermore, the flow also is steady after a certain instant of time,

so that dq/dt = O thenceforth, implying that Eq. (I.1.6") holds, it
follows that

h+ 3¢ — Q = const = H, (3)

where this result may be interpreted to mean that the flow is isoenergetic
throughout.

If, in addition, the body forces may be neglected, or if they are
nonexistent under this assumed condition of steady flow, the result just
obtained becomes even more simple in form because under this further
assumption it is true for all points in the flow that
H=h+ }q¢> = const = H,,. 3)

It is worth pointing out at this juncture that, if a steady flow happens
to have streamlines that begin and end at infinity where the motion is
uniformly the same on al! streamlines, then it is unnecessary to take
into consideration the history of the flow preceding the time when it
became steady in order to be able to affirm that it will be homentropic,
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irrotational, and isoenergetic throughout. In fact, under these conditions
it may be seen directly from Eqs. (I 1.4)~(1.1.6) that S = const = .5,
H = const = H,, and rotq = 0.

The energy form of the Bernoulli equation is expressed by Eq. (3)
or (3') for a steady flow. 'The latter equation applies when the external
forces vanish or are negligibly small, and this assumption about the
external forces will be considered to be in effect from now on. The
constant H, appearing in this form of the Bernoulli equation is the value
of # when ¢ = 0; consequently, H, may be interpreted as the stagnation
enthalpy, or, in other words, 1t 1s the enthalpy (per unit mass) that is
produced in the unit mass as it is subjected to an adiabatic compression
(no heat exchanged with other masses) of such magnitude that the flow
is brought to a complete stop.

For a perfect fluid having a constant specific heat (in which case it is
said to be calorically perfect), the following relations hold true:

R ;

e and Hy=—Y Do (4)

y—1 pg

o I

where y is the ratio of the specific heat at constant pressure ¢, to the
specific heat at constant volume ¢.. The subscript zero on p and p is
used to indicate that these are the pressure and density that would be
found to exist at a stagnation point. It follows then that

a® = (9p[0p)s—const = yPlp = vAT, (5)

where a is the velocity of sound in the fluid where the local temperature
is T.

Consequently, when the proper substitutions have been carried out,
the familiar Bernoulli equation may be put into the alternate forms

P, v Po. 1 ST IR
where the definition has been introduced that
2 2.')/ pO
T A 7
L S M

The meaning of the quantity ¢, may be best understood by observing
what happens when the flow is expanded into a vacuum. According to
the first of the relations given in Egs. (6), if the velocity, ¢, is allowed
to increase to such a large value that p = O (i.e., an absolute vacuum is
reached), then 3} ¢* equals the constant on the right hand side; con-
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sequently, ¢ becomes ¢,. T'hus, ¢, represents the maximum or limit
velocity that the flow can attain, provided that the total energy is fixed
beforehand.

By examining the second of the relations given in Egs. (6), the following
basic relation becomes cvident. If at any point in the gaseous flow the
local velocity happens to become equal to the local velocity of sound at
the same point, then this velocity, called the critical velocity and
customarily denoted by the symbol a*, is determined by the formula

w_y—1, 2 Po _ 2 2
¢ yH I Ty T 1% -

where a4, stands for the velocity of sound at a location where the flow
has been brought to rest, viz., where the stagnation temperature is
T, . ,

Some important relations may be expressed in terms of the critical
pressure p*, the critical density p*, and the critical temperature 7%,
where these critical properties are the corresponding pressure, density,
and temperature that exist at those locations where the local velocity is
equal to the critical velocity @*. In accordance with thesc definitions,
it is seen that

a*? = yp*[p*,
with the immediate consequence that

Pr_ 2 by
p* v+ 1 po

Inasmuch as it is now being taken for granted that the flow is homen-
tropic, it follows that the pressures and densities are linked by the
relation

P*_(p*Y
[T—(Po)’

from which it may be deduced that

ot ==

Po

ﬂt B 2 y/(*yrl). P* 2 l/(yfl). T* 2
pok(y+1) ('y-l—l) I S
The value of y may be determined on the basis of the molecular
model envisioned in the classical kinetic theory of gases. According to
the tenets of this theory, it follows that y = 1"+ (2/f) where f denotes
the number of degrees of freedom of the various molecular constructs



