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Systems of Units. Some Important Conversion Factors

The most important systems of units are shown in the table below. The Mks System is
also known as the International System of Units (abbreviated SI System), and the ab-
breviations s (instead of sec) and N (instead of nt) are also used.

System of units Length Mass Time Force
Cgs system centimeter (cm) | gram (gm) second (sec) | dyne
Mks system meter (m) kilogram (kg) | second (sec) | newton (nt)
Engineering system | foot (ft) slug second (sec) | pound (Ib)
1 inch (in.) = 2.54000 51 cm 1 foot (ft) = 12 in. = 30.48006 12 cm
1 yard (yd) = 3 ft = 91.44018 36 cm | statute mile (mi) = 5280 ft = 1.60935 km

1 nautical mile = 6080.2 ft = 1.8532 km

1 acre = 4840 yd? = 4046.773 m? 1 mi2 = 640 acres = 2.58999 87 km?

1 fluid ounce = 29.5737 cm?

1 U.S. gallon = 4 quarts (liq) = 8 pints (lig) = 128 fl 0z = 3785.432 cm?

1 British Imperial and Canadian gallon = 1.20094 U.S. gallons = 4546.1 cm?
1 slug = 14.59390 kg

1 pound (Ib) = 4.448444 nt 1 newton (nt) = 10° dynes

1 British thermal unit (Btu) = 1054.8 joules 1 joule = 107 ergs

1 calorie (cal) = 4.1840 joules

1 kilowatt-hour (kWh) = 3413 Btu = 3.6 - 105 joules

1 horsepower (hp) = 2545 Btu/h = 178.2 cal/sec = 0.74570 kW

1 kilowatt (kW) = 1000 watts = 3413 Btu/h = 238.9 cal/sec

°F=°C-18 + 32 1° = 60" = 3600" = 0.01745 radian

For further details see, e.g., D. Halliday and R. Resnick, Physics. 3rd ed., New York: Wiley, 1978. See also
AN American National Standard, ASTM/IEEE Standard Metric Practice, Institute of Electrical and Electronics
Engineers, Inc., 345 East 47th Street, New York, N.Y. 10017.
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Preface

Purpose of the Book

This book introduces students of engineering, physics, mathematics and
computer science to those areas of mathematics which, from a modern point
of view, are most important in connection with practical problems.

The content and character of mathematics needed in applications are
changing rapidly. Linear algebra—especially matrices—and numerical meth-
ods for computers are of increasing importance. Statistics and graph theory
play more prominent roles. Real analysis (ordinary and partial differential
equations) and complex analysis remain indispensable. The material in this
book is arranged accordingly, in seven independent parts (see also the dia-
gram on the next page):

A Ordinary Differential Equations (Chaps. 1-5)

B Linear Algebra, Vector Calculus (Chaps. 6-9)

C. Fourier Analysis and Partial Differential Equations
(Chaps. 10, 11)

D Complex Analysis (Chaps. 12-17)

E Numerical Methods (Chaps. 18-20)

F  Optimization, Graphs (Chaps. 21, 22)

G . Probability and Statistics (Chaps. 23, 24)

This is followed by

References (App. 1)

Answers to Problems (App. 2)

Auxiliary Material (App. 3 and inside of covers)
Tables of Functions (App. 4).

This book has helped to pave the way for the present development and
will prepare students for the present situation and the future by a modern
approach to the areas listed above and the ideas—some of them computer-
related—that are presently causing basic changes: Many methods have be-
come obsolete. New ideas are emphasized, for instance stability, error es-
timation and structural problems of algorithms, to mention just a few. Trends
are driven by supply and demand: supply of powerful new mathematical and
computational methods and of enormous computer capacities, demand to
solve problems of growing complexity and size, arising from more and more
sophisticated systems or production processes, from extreme physical con-
ditions (e.g., those in space travel), from materials with unusual properties
(plastics, alloys, superconductors, etc.), or from entirely new tasks in com-
puter vision, robotics and other new fields.
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PREFACE vii

The general trend seems clear. Details are more difficult to predict. Ac-
cordingly, students need solid knowledge of basic principles, methods and
results, and a clear perception of what engineering mathematics is all about,
in all three phases of solving problems:

® Modeling: Translating given physical or other information and data into
mathematical form, into a mathematical model (a differential equation,
a system of equations or some other expression).

Solving: Obtaining the solution by selecting and applying suitable math-
ematical methods, and in most cases doing numerical work on a com-
puter.

Interpreting: Understanding the meaning and the implications of the
mathematical solution for the original problem in terms of physics—
or whereever the problem comes from.

It would make no sense to overload students with all kinds of little things
that might be of occasional use. Instead, it is important that students become
familiar with ways to think mathematically, recognize the need for applying
mathematical methods to engineering problems, realize that mathematics is
a systematic science built on relatively few basic concepts and involving
powerful unifying principles, and get a firm grasp for the interrelation be-
tween theory, computing and experiment.

The rapid ongoing developments just sketched have led to many changes
and new features in the present edition of this book, causing it to differ very
substantially from previous editions.

Changes and New Features Throughout the Book

The book has been simplified by rewriting various sections in a more detailed
and leisurely fashion and by placing more emphasis on applications, algorithms
and examples.

We first list some major changes and additions pertaining to the book as
a whole and then some of the many changes and additions in individual
chapters.

® Problem sets changed and expanded to contain over 6000 carefully se-
lected problems, including more applied problems and more routine
problems

Chapter review problems added, to give students practice in choosing
a method from the great variety of methods in a whole chapter

Worked-out examples increased to over 600, for help in problem solving
and better understanding of the text

® Key formulas boxed

Chapter summaries added, for quick orientation and survey of the most
important facts in each chapter

Changes in chapters are listed on the next page.
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Changes and New Features in Chapters

Ordinary differential equations (Chaps. 1-4): More systematical treat-
ment of integrating factors (Sec. 1.6). Linear differential equations
(Chap. 2) cast in simpler and more logical form. Frobenius method
(Sec. 4.4) greatly simplified.

Laplace transformation (Chap. 5). New: shifted data problems, impul-
sive forc€s, Dirac’s delta, list of general formulas, (in addition to the
list of transforms)

Matrices (Chap. 7): More applications (Markov processes, Leslie ma-
trices, etc.). More on eigenvalues and diagonalization. Additional mod-
ern numerical methods (see below)

Vector differential and integral calculus (Chaps. 8, 9) streamlined by
omitting some material of minor interest or making it optional. Grad,
div, curl now close together; their forms in curvilinear coordinates
(new). Greater emphasis on the types of integrals needed in the integral
theorems in Chap. 9.

Fourier transformation, Fourier sine and cosine transformations (Secs.
10.10-10.12, new) with applications to partial differential equations
(Sec. 11.14)

Complex analysis (Chaps. 12—17) reorganized to make it more teach-
able: 1. Mappings by elementary functions added to Chap. 12 (Sec. 12.9).
2. Conformal mapping moved to Chap. 16, to have it close to its
applications in Chap. 17 on potential theory, which has been extended
by stationary heat problems, etc.

3. The lengthy introductory chapter on series now reduced to two
sections that precede the discussion of power, Taylor and Laurent
series.

4. More on evaluating real integrals by complex integration.
Numerical methods (Chaps. 18-20) modernized throughout, by adding
new and more detailed algorithms and discussing more worked-out
examples, by including computer-related aspects, on operations count,
pivoting, numerical stability, rounding errors etc.; by giving more ex-
tensive treatments of Newton interpolation, splines, LU-factorization
(Doolittle, Crout, Cholesky), and adding new material, such as matrix
norms, condition numbers, matrix deflation and tridiagonalization, OR,
spectral shift, etc.

Graph theory: A new self-contained chapter (Chap. 22) on graphs and
digraphs and their application in combinatorial optimization (traveling
salesman and other shortest path problems, shortest spanning trees,
network flows, matching, etc.).

Probability and statistics (Chaps. 23, 24) reorganized by moving sections
on sampling to Chap. 24.

References (App. 1) updated and extended, notably those on numerical
methods and optimization

Auxiliary material added: Review of partial derivatives (App. 3.2), real
series (App. 3.3), first-aid kits of differentiation formulas and integrals,
conversion table, Greek alphabet (all on the inside covers).
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Suggestions for Courses: A Four-Semester Sequence

The material may be taken in sequence and is suitable for four consecutive
semester courses, meeting 3-5 hours a week:

First semester. Ordinary differential equations (Chaps. 1-5)
Second semester. Linear algebra and vector analysis (Chaps. 6-9)
Third semester. Complex analysis (Chaps. 12-17)

Fourth semester. Numerical methods (Chaps. 18-20)

For the remaining chapters, see below. Possible interchanges are obvious;
for instance, numerical methods could precede complex analysis, etc.

Suggestions for Courses: Independent One-Semester Courses

The book is also suitable for various independent one-semester courses
meeting 3 hours a week; for example:

Introduction to ordinary differential equations (Chaps. 1, 2)
Laplace transformation (Chap. 5)

Vector algebra and calculus (Chaps. 6, 8)

Matrices and systems of linear equations (Chap. 7)

Fourier series and partial differential equations (Chaps. 10, 11,
Secs. 20.4-20.7)

Introduction to complex analysis (Chaps. 12-15)
Numerical analysis (Chaps. 18, 20)

Numerical linear algebra (Chap. 7 for review, Chap. 19)
Optimization (Chaps. 21, 22)

Graphs and combinatorial optimization (Chap. 22)
Probability and statistics (Chaps. 23, 24)

General Features of This Edition

The selection, arrangement and presentation of the material has been made
with greatest care, based on past and present teaching, research and con-
sulting experience. Some major features of the book are these:

The book is self-contained, except for a few clearly marked places where
a proof would be beyond the level of a book of the present type and a
reference is given instead. Hiding difficulties or oversimplifying would be
of no real help to students.

The presentation is detailed, to avoid irritating readers by frequent ref-
erences to details in other books.

The examples are simple, to make the book teachable—why choose com-
plicated examples when simple ones are as instructive or even better?

The notations are modern and standard, to help students read articles in
journals or other modern books and understand other mathematically ori-
ented courses.

The chapters are largely independent, providing flexibility in teaching spe-
cial courses (see above).

The end of a proof is marked by . This sign is also used at the end of
some of the definitions and at the end of examples followed by further text.
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