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Dedication

This volume consists of papers presented at a symposium honoring Earll
Murman and recognizing his seminal contributions to transonic aerodynamics
and to computational fluid dynamics (CFD) over the past three decades.

The symposium, entitled Thirty Years of CFD and Transonic Flow, was
held in Everett, Washington on June 24-26, 1997. The authors were selected
from among internationally known researchers working in aerodynamics and
CFD, where the impact of Murman’s contributions have been so important.
It is the pleasure of the authors and the editors to dedicate this book to Earll
in recognition of the important role he has played in our technology and in
our lives.

‘Earll Murman was born on May 12, 1942. He was raised in San Francisco,
but went East to Princeton University where he received the B.S., M.A., and
Ph.D. degrees in 1963, 1965, and 1967, respectively. His Ph.D. research, under
the direction of Professor S. M. Bogdonoff, led to the dissertation entitled
“Experimental Studies of a Laminar Hypersonic Cone Wake.” He joined the
Boeing Scientific Research Laboratory (BSRL) in 1967, and remained there
until 1971. During this period he worked with Professor Julian Cole, who
was spending a sabbatical leave from UCLA at the Boeing Laboratory. Their
collaboration produced the breakthrough known as the Murman-Cole scheme,
which allowed the first practical calculations of steady, transonic flow fields
containing regions of supersonic flow embedded in subsonic regions.

In 1971 Earll joined the NASA Ames Research Center and, in 1973,
presented his fully conservative version of the Murman-Cole scheme at the first
AJAA Conference on CFD, held in Palm Springs, California. His pioneering
work on wind tunnel wall interference and on design and optimization also
were remarkable forerunners of current attempts to develop multi-disciplinary
optimization techniques.

The paper describing the Murman-Cole' scheme was published in the
January 1971 issue of the AJAA Journal, and has been identified as a Citation
Classic by Current Contents, Vol. 27, No. 45, November 9, 1987.
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Murman'’s collaboration with Cole continued and produced another classic,
their AIAA paper on Inviscid Drag at Transonic Speeds, presented in Palo
Alto in 1974. In that year, Earll joined the Flow Research Company in Kent,
Washington, where he became Vice President and General Manager in 1977.
He moved to MIT as Professor of Aeronautics and Astronautics in 1980, and
became Department Head from 1990 to 1996.

Earll has served as a consultant to Calspan, United Technologies
Corporation, Pratt & Whitney, General Electric Corporation, Stellar
Computer Company, Kendall Square Research, and Microcraft Technology.

At MIT, Earll served as Director of the Computational Fluid Dynamics
Laboratory from 1980 to 1990. He chaired the Project Athena Resource
Committee and, more recently, was the motive force behind Todor, a software
package designed to enhance fluid mechanics curricula using computers.

Earll has taught courses on Transonic Aerodynamics, Computational Fluid
Mechanics, Viscous Fluids, Heat and Mass Transfer, Fluid Dynamics of
Flight and Re-entry Vehicles, and has supervised numerical and experimental
projects for undergraduate students. He has advised 26 undergraduates, 20
Masters level students, and 8 Ph.D. students. His research at MIT has been
directed at solution of the Euler equations, including the simulation of vortical
flows. He also has worked on boundary layers and their coupling with Euler
calculations. chemically reacting flows, Navier-Stokes equations, and viscous
hypersonic flows, as well as flow visualization techniques. He is genuinely
interested in engineering education, as is clear from his publications.

He has been an active participant in many committees of the American
Institute of Aeronautics and Astronautics, the National Aeronautics and
Space Administration, the Department of Defense, and the aerospace industry,
and has served as Director of the Lean Aircraft Initiative since 1995. He is a
Fellow of the ATAA and a member of the National Academy of Engineering.

In the first chapter of this book, Murman'’s technical contributions will be
discussed in more detail, particularly their impact on transonic aerodynamics
and CFD in general. Earll’s contributions are not restricted to his technical
ideas, his leadership, the courses he has taught, or his supervision of many
talented students at MIT. Our community has been blessed to have a person
like Earll, who has affected not only the people with whom he has worked
directly over the years, but many others who have never had the pleasure of
meeting him personally. It has been said that Murman opened the door for the
flood of activity that followed his original contributions. Because of his vision,
his personality, and his generous nature, he is highly respected throughout the
aerospace community. It is our hope that there will be a second conference in
the future, dedicated to his continued contributions during the next 30 years.




Earll M. Murman
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1

A Review of the Contributions of
Earll Murman to Transonic Flow
and Computational Fluid
Dynamics

Mohamed M. Hafez! & David A. Caughey?

1.1 Introduction

In this chapter, the work of Earll Murman over the past thirty years will be
discussed, and some of his main ideas will be examined in detail. A complete
list of his publications, up to 1996, together with titles of his students’ theses
are included as well. (It is of interest to note that Earll’s Ph.D. thesis was on
experimental studies of laminar, hypersonic wakes.)

One can divide Murman's papers, after his graduation from Princeton, into
two groups; the first belongs to the period from 1967 to 1980 when he was at
Boeing, the NASA Ames Research Center, and Flow Research, Inc. Almost
all of these papers were based on the transonic, small-disturbance equation
for potential flow. The papers in the second group were written from 1980 on,
after he joined MIT, and they concern many topics, including solutions of the
Euler and Navier-Stokes equations.

The significance of Murman’s contributions to transonic flow is evident if
one, for example, compares the contents of the proceedings of the Symposium
Transsonicum in 1962 with those of the successor conferences in 1975 and

T Department of Mechanical and Aeronautical Engineering, University of California at
Davis, Davis, California 95616.

2 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New
York 14853-7501.

Frontiers of Computational Fluid Dynamics — 1998
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2 HAFEZ & CAUGHEY

1988. The impact of Murman’s work is manifested through the quality and
the quantity of the papers dealing with transonic flow simulations in the latter
two conferences. His paper on vortical flows over delta wings in the proceedings
of the third Symposium (in 1988) reflects his emphasis on both the physics
and the numerics of the associated phenomena.

On the other hand, Murman’s contributions to CFD are even more
impressive. Introducing the concept of type-dependent differencing, the
relation between upwind schemes and artificial viscosity, proper linearization,
and viewing relaxation as an artificial time-dependent process, followed by
the importance of conservation — not only at the differential level, but at the
discrete level, as well — and the construction of proper switches to capture
shock waves correctly; these were some of the newly born concepts put
together for the first time to produce, using computers of the early 1970s,
two- and three-dimensional solutions for the transonic flow over aerodynamic
configurations with reasonable predictions, not only of lift, but of inviscid
drag, in the transonic regime.

His work can be said to have provided the first convincing evidence that
led the aerospace industry to consider CFD seriously as an analysis tool that
complemented the wind tunnel.

1.2 Contributions to Transonic Flow

Theoretical work on transonic flow dates from the beginning of the twentieth
century and the work by Chaplygin on gas jets. By the late 1940s the
nonlinear, transonic, small-disturbance equation for planar flows

(K¢ — ¢2/2)_ + byy =0

was derived independently by Oswatitsch, Guderley, Busemann, and von
Karman. In this equation, ¢ is the scaled perturbation velocity potential, z and
y are Cartesian coordinates parallel and perpendicular to the direction of the
free stream, respectively, and K is the transonic similarity parameter.® In 1947
the above form of the equation, identifying the transonic similarity parameter
and establishing the transonic similitude, was derived by von Karman, and at
the same time the Mach number freeze principle was discovered. The transonic
area rule was discovered, based on slender-body theory, by Oswatitsch &
Keune, and was verified experimentally by Whitcomb.

Guderley wrote the first book on Theory of Transonic Flow in 1957, and
Ferrari & Tricomi’s Transonic Aerodynamics appeared in 1962. Landahl’s

3 For planar flows the scalings are such that K « (1 — M2?)/7%/3; for the axisymmetric

version of the transonic small-disturbance theory, the similarity parameter is K o
(1—M?2)/r2.
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Unsteady Transonic Flow was published in 1960, and Ashley & Landahl’s
Aerodynamics of Wings and Bodies was published in 1965. Both von
Mises’ Mathematical Theory of Compressible Fluid Flow and Bers’
Mathematical Aspects of Subsonic and Transonic Gas Dynamics
were published in 1958. Bitzadze’s Equations of the Mixed Type and
Manwell’s Hodograph Equations appeared in 1964 and 1971, respectively.
In this regard Germain’s review article in 1964 must also be mentioned. The
most comprehensive treatment to date of the transonmic, small-disturbance
theory was published in Transonic Aerodynamics by Cole & Cook in 1986.

Most of the early work on transonic flow was based on the hodograph
method, in which the dependent and independent variables are interchanged
with the result that the equations of planar flow become linear, allowing
solutions to be comstructed by superposition. This method is restricted to
isentropic, irrotational, steady flows in two dimensions, and the treatment of
shocks is complicated. The simple geometry of a finite wedge was treated by
Guderley & Yoshihara and by Cole in the early 1950s. Vincenti & Waggoner
calculated flow over a double-wedge profile and an inclined flat plate at a free
stream Mach number of unity. The boundary condition at a solid surface for
a general airfoil shape is extremely difficult to handle in the hodograph plane.

Nieuland & Boerstoel designed shock-free airfoils in the 1960s by extending
the earlier work of Lighthill & Cherry. In the early 1970s Garabedian &
Korn successfully applied the method of complex characteristics to handle the
mixed type equation, and were able to design supercritical (shock-free) wing
sections, including the widely-studied Korn Airfoil. (See the related work by
Garabedian and Chen in this volume.) These contributions were particularly
important in light of the common misinterpretation of the earlier work of
Morawetz and others to imply the nonexistence of continuous, transonic flow
past profiles.* In fact, that work did not rule out the existence of shock-free
singular solutions having no neighboring shock-free solutions. Pearcey, and
later Whitcomb, succeeded in demonstrating experimentally that essentially
shock-free airfoils can be realized and used. From an engineering point of
view, the presence of very weak shocks is allowed, as they do not destroy the
efficiency of the design below the drag-rise Mach number.

Another formulation, which is restricted to steady, two dimensional
(including axisymmetric) flows, is based on the use of a stream function.
In the early 1940s Emmons calculated transonic flows past airfoils using
this formulation. His finite-difference solutions were calculated by hand using
a relaxation procedure with shock fitting. Also in the 1940s Macoll solved

4 Recently, computer simulations have been used to study existence and uniqueness issues.
Steinhoff & Jameson, and later Salas et al., demonstrated the non-uniqueness of potential
flow solutions. In 1991 Jameson showed similar problems for steady solutions to the Euler
equations. The problem persists even for high Reynolds number, attached flow solutions
of the Navier-Stokes equations, as demonstrated by Hafez & Guo.



