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Preface

Nowadays, embedded systems have permeated various aspects of industry. Therefore,
we can hardly discuss our life or society from now on without referring to embedded
systems. For wide-ranging embedded systems to continue their growth, a number of
high-quality fundamental and applied researches are indispensable.

This book addresses a wide spectrum of research topics on embedded systems,
including basic researches, theoretical studies, and practical work. The book consists of
nineteen chapters. In Part 1, real-time property, task scheduling, predictability,
reliability and safety, which are key factors in real-time embedded systems and will be
further treated as important, are introduced by five chapters.

Then, design/evaluation methodology, verification, and development environment,
which are indispensable to embedded systems development, are dealt with in Part 2,
through ten chapters.

In Part 3, two chapters present high-level synthesis technologies, which can raise
design abstraction and make system development periods shorter. The third chapter
reveals embedded low-power SRAM cells for future embedded system, and the last
one addresses the important issue, energy efficient applications.

Embedded systems are part of products that can be made only after fusing
miscellaneous technologies together. I expect that various technologies condensed in
this book would be helpful to researchers and engineers around the world.

The editor would like to express his appreciation to the authors of this book for
presenting their precious work. The editor would like to thank Ms. Marina Jozipovic,
the publishing process manager of this book, and all members of InTech for their
editorial assistance.

Kiyofumi Tanaka

School of Information Science

Japan Advanced Institute of Science and Technology
Japan



Contents

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Part 2

Chapter 6

Chapter 7

Preface IX

Real-Time Property,
Task Scheduling, Predictability, Reliability, and Safety 1

Ways for Implementing Highly-Predictable
Embedded Systems Using

Time-Triggered Co-Operative (TTC) Architectures 3
Mouaaz Nahas and Ahmed M. Nahhas

Safely Embedded Software
for State Machines in Automotive Applications 17
Juergen Mottok, Frank Schiller and Thomas Zeitler

Vulnerability Analysis and Risk Assessment
for SoCs Used in Safety-Critical Embedded Systems 51
Yung-Yuan Chen and Tong-Ying Juang

Simulation and Synthesis Techniques
for Soft Error-Resilient Microprocessors 73
Makoto Sugihara

Real-Time Operating Systems
and Programming Languages for Embedded Systems 123
Javier D. Orozco and Rodrigo M. Santos

Design/Evaluation Methodology,
Verification, and Development Environment 121

Architecting Embedded
Software for Context-Aware Systems 123
Susanna Pantsar-Syvdniemi

FSMD-Based Hardware Accelerators for FPGAs 143
Nikolaos Kavvadias, Vasiliki Giannakopoulou
and Kostas Masselos



VI Contents

Chapter 8 Context Aware Model-Checking
for Embedded Software 167
Philippe Dhaussy, Jean-Charles Roger
and Frédéric Boniol

Chapter 9 A Visual Software Development
Environment that Considers Tests of Physical Units 185
Takaaki Goto, Yasunori Shiono, Tomoo Sumida,
Tetsuro Nishino, Takeo Yaku and Kensei Tsuchida

Chapter 10 A Methodology for Scheduling Analysis
Based on UML Development Models 203
Matthias Hagner and Ursula Goltz

Chapter 11 Formal Foundations for the Generation
of Heterogeneous Executable Specifications
in SystemC from UML/MARTE Models 227
Pablo Pefiil, Fernando Herrera and Eugenio Villar

Chapter 12 Concurrent Specification of Embedded Systems:
An Insight into the Flexibility vs Correctness Trade-Off 251
F. Herrera and |. Ugarte

Chapter 13 SW Annotation Techniques
and RTOS Modelling for Native Simulation
of Heterogeneous Embedded Systems 277
Héctor Posadas, Alvaro Diaz and Eugenio Villar

Chapter 14  The Innovative Design of Low Cost
Embedded Controller
for Complex Control Systems 303
Meng Shao, Zhe Peng and Longhua Ma

Chapter 15  Choosing Appropriate Programming
Language to Implement Software for
Real-Time Resource-Constrained Embedded Systems 323
Mouaaz Nahas and Adi Maaita

Part 3 High-Level Synthesis,
SRAM Cells, and Energy Efficiency 339

Chapter 16  High-Level Synthesis
for Embedded Systems 341
Michael Dossis

Chapter 17 A Hierarchical C2RTL Framework
for Hardware Configurable Embedded Systems 367
Yongpan Liu, Shuangchen Li, Huazhong Yang and Pei Zhang



Chapter 18

Chapter 19

Contents

SRAM Cells for Embedded Systems 387
Jawar Singh and Balwinder Raj

Development of Energy Efficiency Aware Applications
Using Commercial Low Power Embedded Systems 407
Konstantin Mikhaylov, Jouni Tervonen and Dmitry Fadeev

\



Part 1

Real-Time Property, Task Scheduling,
Predictability, Reliability, and Safety






Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered
Co-Operative (TTC) Architectures

Mouaaz Nahas and Ahmed M. Nahhas

Department of Electrical Engineering, College of Engineering and Islamic Architecture,
Umm Al-Qura University, Makkah,

Saudi Arabia

1. Introduction

Embedded system is a special-purpose computer system which is designed to perform a
small number of dedicated functions for a specific application (Sachitanand, 2002; Kamal,
2003). Examples of applications using embedded systems are: microwave ovens, TVs, VCRs,
DVDs, mobile phones, MP3 players, washing machines, air conditions, handheld
calculators, printers, digital watches, digital cameras, automatic teller machines (ATMs) and
medical equipments (Barr, 1999; Bolton, 2000; Fisher et al., 2004; Pop et al., 2004). Besides
these applications, which can be viewed as “noncritical” systems, embedded technology has
also been used to develop “safety-critical” systems where failures can have very serious
impacts on human safety. Examples include aerospace, automotive, railway, military and
medical applications (Redmill, 1992; Profeta et al., 1996; Storey, 1996; Konrad et al., 2004).

The utilization of embedded systems in safety-critical applications requires that the system
should have real-time operations to achieve correct functionality and/or avoid any
possibility for detrimental consequences. Real-time behavior can only be achieved if the
system is able to perform predictable and deterministic processing (Stankovic, 1988; Pont,
2001; Buttazzo, 2005; Phatrapornnant, 2007). As a result, the correct behavior of a real-time
system depends on the time at which these results are produced as well as the logical
correctness of the output results (Avrunin et al., 1998; Kopetz, 1997). In real-time embedded
applications, it is important to predict the timing behavior of the system to guarantee that
the system will behave correctly and consequently the life of the people using the system
will be saved. Hence, predictability is the key characteristic in real-time embedded systems.

Embedded systems engineers are concerned with all aspects of the system development
including hardware and software engineering. Therefore, activities such as specification,
design, implementation, validation, deployment and maintenance will all be involved in the
development of an embedded application (Fig. 1). A design of any system usually starts
with ideas in people’s mind. These ideas need to be captured in requirements specification
documents that specify the basic functions and the desirable features of the system. The
system design process then determines how these functions can be provided by the system
components.
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Fig. 1. The system development life cycle (Nahas, 2008).

For successful design, the system requirements have to be expressed and documented in a
very clear way. Inevitably, there can be numerous ways in which the requirements for a
simple system can be described.

Once the system requirements have been clearly defined and well documented, the first step
in the design process is to design the overall system architecture. Architecture of a system
basically represents an overview of the system components (i.e. sub-systems) and the
interrelationships between these different components. Once the software architecture is
identified, the process of implementing that architecture should take place. This can be
achieved using a lower-level system representation such as an operating system or a
scheduler. Scheduler is-a very simple operating system for an embedded application (Pont,
2001). Building the scheduler would require a scheduling algorithm which simply provides
the set of rules that determine the order in which the tasks will be executed by the scheduler
during the system operating time. It is therefore the most important factor which influences
predictability in the system, as it is responsible for satisfying timing and resource
requirements (Buttazzo, 2005). However, the actual implementation of the scheduling
algorithm on the embedded microcontroller has an important role in determining the
functional and temporal behavior of the embedded system.

This chapter is mainly concerned with so-called “Time-Triggered Co-operative” (TTC)
schedulers and how such algorithms can be implemented in highly-predictable, resource-
constrained embedded applications.

The layout of the chapter is as follows. Section 2 provides a detailed comparison between
the two key software architectures used in the design of real-time embedded systems,
namely "time-triggered" and "event-triggered". Section 3 introduces and compares the two
most known scheduling policies, "co-operative" and "pre-emptive", and highlights the
advantages of co-operative over pre-emptive scheduling. Section 4 discusses the
relationship between scheduling algorithms and scheduler implementations in practical
embedded systems. In Section 5, Time-Triggered Co-operative (TTC) scheduling algorithm
is introduced in detail with a particular focus on its strengths and drawbacks and how such
drawbacks can be addressed to maintain its reliability and predictability attributes. Section 6
discusses the sources and impact of timing jitter in TTC scheduling algorithm. Section 7
describes various possible ways in which the TTC scheduling algorithm can be
implemented on resource-constrained embedded systems that require highly-predictable
system behavior. In Section 8, the various scheduler implementations are compared and
contrasted in terms of jitter characteristics, error handling capabilities and resource
requirements. The overall chapter conclusions are presented in Section 9.

2. Software architectures of embedded systems

Embedded systems are composed of hardware and software components. The success of an
embedded design, thus, depends on the right selection of the hardware platform(s) as well
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as the software environment used in conjunction with the hardware. The selection of
hardware and software architectures of an application must take place at early stages in the
development process (typically at the design phase). Hardware architecture relates mainly
to the type of the processor (or microcontroller) platform(s) used and the structure of the
various hardware components that are comprised in the system: see Mwelwa (2006) for
further discussion about hardware architectures for embedded systems.

Provided that the hardware architecture is decided, an embedded application requires an
appropriate form of software architecture to be implemented. To determine the most
appropriate choice for software architecture in a particular system, this condition must be
fulfilled (Locke, 1992): “The [software] architecture must be capable of providing a provable
prediction of the ability of the application design to meet all of its time constraints.”

Since embedded systems are usually implemented as collections of real-time tasks, the
various possible system architectures may then be determined by the characteristics of these
tasks. In general, there are two main software architectures which are typically used in the
design of embedded systems:

Event-triggered (ET): tasks are invoked as a response to aperiodic events. In this case, the
system takes no account of time: instead, the system is controlled purely by the response to
external events, typically represented by interrupts which can arrive at anytime (Bannatyne,
1998; Kopetz, 1991b). Generally, ET solution is recommended for applications in which
sporadic data messages (with unknown request times) are exchanged in the system (Hsieh
and Hsu, 2005).

Time-triggered (TT): tasks are invoked periodically at specific time intervals which are
known in advance. The system is usually driven by a global clock which is linked to a
hardware timer that overflows at specific time instants to generate periodic interrupts
(Bennett, 1994). In distributed systems, where multi-processor hardware architecture is
used, the global clock is distributed across the network (via the communication medium) to
synchronise the local time base of all processors. In such architectures, time-triggering
mechanism is based on time-division multiple access (TDMA) in which each processor-node
is allocated a periodic time slot to broadcast its periodic messages (Kopetz, 1991b). TT
solution can suit many control applications where the data messages exchanged in the
system are periodic (Kopetz, 1997).

Many researchers argue that ET architectures are highly flexible and can provide high
resource efficiency (Obermaisser, 2004; Locke, 1992). However, ET architectures allow
several interrupts to arrive at the same time, where these interrupts might indicate (for
example) that two different faults have been detected at the same time. Inevitably, dealing
with an occurrence of several events at the same time will increase the system complexity
and reduce the ability to predict the behavior of the ET system (Scheler and Schroder-
Preikschat, 2006). In more severe circumstances, the system may fail completely if it is
heavily loaded with events that occur at once (Marti, 2002). In contrast, using TT
architectures helps to ensure that only a single event is handled at a time and therefore the
behavior of the system can be highly-predictable.

Since highly-predictable system behavior is an important design requirement for many
embedded systems, TT software architectures have become the subject of considerable
attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT
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architectures are a good match for many safety-critical applications, since they can help to
improve the overall safety and reliability (Allworth, 1981; Storey, 1996; Nissanke, 1997;
Bates; 2000; Obermaisser, 2004). Liu (2000) highlights that TT systems are easy to validate,
test, and certify because the times related to the tasks are deterministic. Detailed
comparisons between the TT and ET concepts were performed by Kopetz (1991a and 1991b).

3. Schedulers and scheduling algorithms

Most embedded systems involve several tasks that share the system resources and
communicate with one another and/or the environment in which they operate. For many
projects, a key challenge is to work out how to schedule tasks so that they can meet their

timing constraints. This process requires an appropriate form of scheduler!. A scheduler can
be viewed as a very simple operating system which calls tasks periodically (or aperiodically)
during the system operating time. Moreover, as with desktop operating systems, a
scheduler has the responsibility to manage the computational and data resources in order to
meet all temporal and functional requirements of the system (Mwelwa, 2006).

According to the nature of the operating tasks, any real-time scheduler must fall under one
of the following types of scheduling policies:

Pre-emptive scheduling: where a multi-tasking process is allowed. In more details, a task
with higher priority is allowed to pre-empt (i.e. interrupt) any lower priority task that is
currently running. The lower priority task will resume once the higher priority task finishes
executing. For example, suppose that - over a particular period of time - a system needs to
execute four tasks (Task A, Task B, Task C, Task D) as illustrated in Fig. 2.

Fig. 2. A schematic representation of four tasks which need to be scheduled for execution on
a single-processor embedded system (Nahas, 2008).

Assuming a single-processor system is used, Task C and Task D can run as required where
Task B is due to execute before Task A is complete. Since no more than one task can run at
the same time on a single-processor, Task A or Task B has to relinquish control of the CPU.

' Note that schedulers represent the core components of “Real-Time Operating System” (RTOS) kernels.
Examples of commercial RTOSs which are used nowadays are: VxWorks (from Wind River), Lynx
(from LynxWorks), RTLinux (from FSMLabs), eCos (from Red Hat), and QNX (from QNX Software
Systems). Most of these operating systems require large amount of computational and memory
resources which are not readily available in low-cost microcontrollers like the ones targeted in this
work.
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In pre-emptive scheduling, a higher priority might be assigned to Task B with the
consequence that - when Task B is due to run - Task A will be interrupted, Task B will run,
and Task A will then resume and complete (Fig. 3).

[FTETAEe©5]

Time

Fig. 3. Pre-emptive scheduling of Task A and Task B in the system shown in Fig. 2: Task B,
here, is assigned a higher priority (Nahas, 2008).

Co-operative (or “non-pre-emptive”) scheduling: where only a single-tasking process is
allowed. In more details, if a higher priority task is ready to run while a lower priority task
is running, the former task cannot be released until the latter one completes its execution.
For example, assume the same set of tasks illustrated in Fig. 2. In the simplest solution, Task
A and Task B can be scheduled co-operatively. In these circumstances, the task which is
currently using the CPU is implicitly assigned a high priority: any other task must therefore
wait until this task relinquishes control before it can execute. In this case, Task A will
complete and then Task B will be executed (Fig. 4).

Time

Fig. 4. Co-operative scheduling of Task A and Task B in the system shown in Fig. 2 (Nahas,
2008).

Hybrid scheduling: where a limited, but efficient, multi-tasking capabilities are provided
(Pont, 2001). That is, only one task in the whole system is set to be pre-emptive (this task is
best viewed as “highest-priority” task), while other tasks are running co-operatively (Fig. 5).
In the example shown in the figure, suppose that Task B is a short task which has to execute
immediately when it arrives. In this case, Task B is set to be pre-emptive so that it acquires
the CPU control to execute whenever it arrives and whether (or not) other task is running.

Time

Fig. 5. Hybrid scheduling of four-tasks: Task B is set to be pre-emptive, where Task A, Task
C and Task D run co-operatively (Nahas, 2008).

Overall, when comparing co-operative with pre-emptive schedulers, many researchers have
argued that co-operative schedulers have many desirable features, particularly for use in
safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bates, 2000; Pont, 2001).
For example, Bates (2000) identified the following four advantages of co-operative
scheduling over pre-emptive alternatives:
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The scheduler is simpler.

The overheads are reduced.

Testing is easier.

Certification authorities tend to support this form of scheduling.

Similarly, Nissanke (1997) noted: “[Pre-emptive] schedules carry greater runtime overheads
because of the need for context switching - storage and retrieval of partially computed results. [Co-
operative] algorithms do not incur such overheads. Other advantages of co-operative algorithms
include their better understandability, greater predictability, ease of testing and their inherent
capability for guaranteeing exclusive access to any shared resource or data.”

Many researchers still, however, believe that pre-emptive approaches are more effective
than co-operative alternatives (Allworth, 1981; Cooling, 1991). This can be due to different
reasons. As in (Pont, 2001), one of the reasons why pre-emptive approaches are more widely
discussed and considered is because of confusion over the options available. Pont gave an
example that the basic cyclic scheduling, which is often discussed by many as an alternative
to pre-emptive, is not a representative of the wide range of co-operative scheduling
architectures that are available.

Moreover, one of the main issues that concern people about the reliability of co-operative
scheduling is that long tasks can have a negative impact on the responsiveness of the
system. This is clearly underlined by Allworth (1981): “[The] main drawback with this co-
operative approach is that while the current process is running, the system is not responsive to
changes in the environment. Therefore, system processes must be extremely brief if the real-time
response [of the] system is not to be impaired.”

However, in many practical embedded systems, the process (task) duration is extremely
short. For example, calculations of one of the very complicated algorithms, the
“proportional integral differential” (PID) controller, can be carried out on the most basic (8-
bit) 8051 microcontroller in around 0.4 ms: this imposes insignificant processor load in most
systems - including flight control - where 10 ms sampling rate is adequate (Pont, 2001).
Pont has also commented that if the system is designed to run long tasks, “this is often
because the developer is unaware of some simple techniques that can be used to break down these tasks
in an appropriate way and - in effect — convert long tasks called infrequently into short tasks called
frequently”: some of these techniques are introduced and discussed in Pont (2001).

Moreover, if the performance of the system is seen slightly poor, it is often advised to
update the microcontroller hardware rather than to use a more complex software
architecture. However, if changing the task design or microcontroller hardware does not
provide the level of performance which is desired for a particular application, then more
than one microcontroller can be used. In such cases, long tasks can be easily moved to
another processor, allowing the host processor to respond rapidly to other events as
required (for further details, see Pont, 2001; Ayavoo et al., 2007).

Please note that the very wide use of pre-emptive schedulers can simply be resulted from a
poor understanding and, hence, undervaluation of the co-operative schedulers. For
example, a co-operative scheduler can be easily constructed using only a few hundred lines
of highly portable code written in a high-level programming language (such as ‘C’), while
the resulting system is highly-predictable (Pont, 2001).
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It is also important to understand that sometimes pre-emptive schedulers are more widely
used in RTOSs due to commercial reasons. For example, companies may have commercial
benefits from using pre-emptive environments. Consequently, as the complexity of these
environments increases, the code size will significantly increase making ‘in-house’
constructions of such environments too complicated. Such complexity factors lead to the
sale of commercial RTOS products at high prices (Pont, 2001). Therefore, further academic
research has been conducted in this area to explore alternative solutions. For example, over
the last few years, the Embedded Systems Laboratory (ESL) researchers have considered
various ways in which simple, highly-predictable, non-pre-emptive (co-operative)
schedulers can be implemented in low-cost embedded systems.

4. Scheduling algorithm and scheduler implementation

A key component of the scheduler is the scheduling algorithm which basically determines the
order in which the tasks will be executed by the scheduler (Buttazzo, 2005). More
specifically, a scheduling algorithm is the set of rules that, at every instant while the system
is running, determines which task must be allocated the resources to execute.

Developers of embedded systems have proposed various scheduling algorithms that can be
used to handle tasks in real-time applications. The selection of appropriate scheduling
algorithm for a set of tasks is based upon the capability of the algorithm to satisfy all timing
constraints of the tasks: where these constraints are derived from the application
requirements. Examples of common scheduling algorithms are: Cyclic Executive (Locke,
1992), Rate Monotonic (Liu & Layland, 1973), Earliest-Deadline-First (Liu & Layland, 1973;
Liu, 2000), Least-Laxity-First (Mok, 1983), Deadline Monotonic (Leung, 1982) and Shared-
Clock (Pont, 2001) schedulers (see Rao et al., 2008 for a simple classification of scheduling
algorithms). This chapter outlines one key example of scheduling algorithms that is widely
used in the design of real-time embedded systems when highly-predictable system behavior
is an essential requirement: this is the Time Triggered Co-operative scheduler which is a
form of cyclic executive.

Note that once the design specifications are converted into appropriate design elements, the
system implementation process can take place by translating those designs into software
and hardware components. People working on the development of embedded systems are
often concerned with the software implementation of the system in which the system
specifications are converted into an executable system (Sommerville, 2007; Koch, 1999). For
example, Koch interpreted the implementation of a system as the way in which the software
program is arranged to meet the system specifications.

The implementation of schedulers is a major problem which faces designers of real-time
scheduling systems (for example, see Cho et al., 2005). In their useful publication, Cho and
colleges clarified that the well-known term scheduling is used to describe the process of
finding the optimal schedule for a set of real-time tasks, while the term scheduler
implementation refers to the process of implementing a physical (software or hardware)
scheduler that enforces - at run-time - the task sequencing determined by the designed
schedule (Cho et al., 2007).



