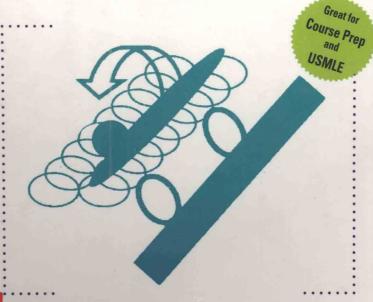


英文影印版


生理学基本要点

BASIC CONCEPTS

Physiology

A STUDENT'S SURVIVAL GUIDE

Charles Seidel

● 北京大学医学出版社

医学生复习指南丛书

英文影印版

生理学基本要点

BASIC CONCEPTS

Physiology

CHARLES SEIDEL, PhD

Professor

Department of Medicine

Department of Molecular Physiology and Biophysics

Baylor College of Medicine

Houston, Texas

北京大学医学出版社

Charles Seidel

Basic Concepts in Physiology: a student's survival guide

ISBN 0 - 07 - 135656 - 8

Copyright©2002 by The McGraw - Hill Companies, Inc.

Original language published by The McGraw – Hill Companies, Inc. All Rights reserved. No part of this publication may be reproduced or distributed in any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

Authorized English language reprint edition jointly published by McGraw - Hill Education (Asia) Co. and Beijing Medical University Press (Peking University Medical Press). This edition is authorized for sale in the People's Republic of China only, excluding Hong Kong, Macao SAR and Taiwan. Unauthorized export of this edition is a violation of the Copyright Act. Violation of this law is subject to Civil and Criminal Penalties.

本书英文影印版由北京医科大学出版社(北京大学医学出版社)和美国麦格劳 - 希尔教育出版(亚洲)公司合作出版。此版本仅限在中华人民共和国境内(不包括香港、澳门特别行政区及台湾)销售,未经许可之出口,视为违反著作权法,将受法律之制裁。未经出版者书面许可,不得以任何方式复制或抄袭本书的任何部分。

本书封面贴有 McGraw - Hill 公司防伪标签,无标签者不得销售。 北京市版权局著作权合同登记号:01 - 2002 - 4781

图书在版编目(CIP)数据

生理学基本要点 = Basic Concepts Physiology/ (美)塞德尔主编.一北京:北京大学医学出版社, 2002.10 (医学生复习指南丛书) ISBN 7-81071-382-5

I.生… II.塞… III.人体生理学 - 医学院校 -教学参考资料 - 英文 IV.R33

中国版本图书馆 CIP 数据核字(2002)第 076146 号

北京大学医学出版社出版 (北京海淀区学院路 38 号北京大学医学部院内 100083) 莱芜市圣龙印务书刊有限责任公司印刷 新华书店经销

开本:787mm×1092mm 1/16 印张:16 字数:341 千字 2002 年 10 月第 1 版 2002 年 10 月山东第 1 次印刷 印数:1-5000 册 定价:26.00 元

\cdot C O N T E N T S \cdot

Preface

CHAPTER 1 HOMEOSTASIS	1
Definition of Physiology	1
Basic Principle of Physiology	1
Components of a Homeostatic System	2
Characteristics of Homeostasis	4
Communication Is an Essential Element of a Homeostatic System	5
CHAPTER 2 CELL PHYSIOLOGY	7
Movement of Molecules Across Cell Membranes	7
General Properties	7
Channel Proteins	8
Carrier Proteins	9
Osmosis and Osmotic Pressure	10
Tonicity	11
Electrical Properties of the Cell	13
Membrane Potential	13
Alterations in the Membrane Potential	15
Action Potential	16
Cell-to-Cell Transmission of an Action Potential	19
Peripheral Nervous System	21
General Organization of the Nervous System	21
Autonomic Nervous System	22
Somatic Nervous System	25
Mechanism of Muscle Contraction	25
Muscle Types	25
Basis of Force Development	26

• 2 •		Content

Control of Intracellular Ca' Concentration	21
Ca ⁺⁺ Regulation of Actin-Myosin Interaction in Striated Muscle	30
Ca ⁺⁺ Regulation of Actin-Myosin Interaction in Smooth Muscle	31
Two Fundamental Mechanical Relationships	32
	2=
CHAPTER 3 CARDIOVASCULAR SYSTEM	35
General Principles	35
Major Divisions of the Cardiovascular System	35
Organization of the Systemic Circulatory System	36
Vasculature	36
Maintenance of Blood Pressure	37
Determinants of Blood Flow	38
Blood Volume	39
Pumping Action of the Heart	40
Function of the Ventricles	40
Cardiac Cycle	41
Systole	42
Diastole	43
Factors Influencing the Pumping Action of the Heart	43
Cardiac Output	43
Heart Rate	44
Stroke Volume	45
Electrical Activity of the Heart	48
Action Potential Conduction	48
Electrocardiogram	48
Components of a Typical ECG Trace	49
Coordination of ECG and Cardiac Cycle	50
Bipolar Limb Leads	52
Unipolar Limb Leads	54
Role of Arterial Resistance in Maintaining Blood Pressure	55
Impact of Arterial Resistance on Pressure and Flow	56
Impact of Arterial Resistance on Cardiovascular System	56
Local Control of Arterial Resistance	57
Autoregulation of Blood Flow	59
Control of Arterial Resistance	60
Role of Venous System in Maintaining Blood Pressure	62
Characteristics of the Venous System	62
Impact of Venous Return	62
Nutrient and Fluid Exchange Across the Capillary Wall	63
General Properties	63
Capillary Osmotic Pressure	64

Contents • 3 •

Blood Pressure Opposes Capillary Osmotic Pressure	
Blood Pressure and Transcapillary Water Movement	65
Transcapillary Water Movement and Blood Pressure	67
Transcapillary Water Movement and Edema	67
Integrated Control of Blood Pressure	68
Pressure Receptors	68
Medullary Cardiovascular Center	69
Interrelationship Between Cardiovascular and Renal Systems	70
Examples of Integrated Cardiovascular Responses	70
Loss of Blood Volume	70
Involvement of Other Systems	72
Cardiovascular Changes Induced upon Standing	72
Cardiovascular Response to Prolonged Standing	73
CHAPTER 4 RENAL PHYSIOLOGY	74
	7.4
General Principles	74
Kidney Functions	74
Basic Kidney Structure	75
Basic Renal Terminology	76
Clearance	77
Clearance Used to Measure GFR and RPF	77
Determinants and Regulation of GFR and RPF	80
Determinants of GFR	80
Regulation of GFR	81
Determinants and Regulation of RBF	82
Interaction Between RBF and GFR	84
Characteristics of Individual Nephron Segments	84
Overview of Tubule Properties	84
Proximal Tubule Reabsorption of Salt and Water	85
Proximal Tubule Reabsorption of Glucose and Amino Acids	87
Proximal Tubule Reabsorption of Bicarbonate Ions	87
Loop of Henle Reabsorption of Salt and Water	88
Counter-current Multiplication	89
Distal Tubule Reabsorption of Salt and Water	91
Collecting Duct Reabsorption of Salt and Water	91
Collecting Duct Secretion of K and H Ions	92
Renal Regulation of Salt and Water Balance	92
Sensing Alterations in Salt Balance	92
Sensing Alterations in Water Balance	93
Reflex Response to Dehydration	94

Renal Regulation of Acid-Base Balance	95
General Considerations	95
Renal Production of Bicarbonate Ions	96
Renal Secretion of H Ions	98
Renal Compensation for Alkalemia	98
Renal Compensation for Acidemia	98
Renal Regulation of K Ion Concentration	99
Importance of a Constant Plasma K Ion Concentration	99
Renal Secretion of K Ions	99
Relationship Between Plasma K Ion and Acid-Base Status	100
Renal Handling of Calcium and Phosphate	100
Renal Handling of Calcium	100
Renal Handling of Phosphate	101
CHAPTER 5 RESPIRATORY PHYSIOLOGY	102
Overview of Lung Function and Structure	102
Lung Functions	102
Lung Structure	102
Moving Air into and out of the Lungs (Ventilation)	104
Lung-Chest Interaction	104
Pressure in the Lungs and Chest	104
Inspiration and Expiration	104
Resistance to Air Flow	105
Lung Volumes and Capacities	106
Dead Space Volumes	108
Ventilation Is Uneven Within the Lungs	108
Ventilation Equations	109
Movement of Gas Between Alveolar Air and Blood	111
General Considerations	111
Gas Composition of Alveolar Air	112
Physical Factors Affect Gas Diffusion	112
Blood Flow Affects the Amount of Gas in the Blood	113
Movement of Blood Through the Lungs	114
Overview of Pulmonary Blood Flow and Resistance	114
Lung Volume Affects Pulmonary Vascular Resistance	114
Blood Flow Is Uneven Within the Lungs	115
Balancing Ventilation and Perfusion	115
Normal Ventilation-Perfusion Imbalance	115
Shunts	117
Shunts and Dead Space are Related and Represent	4.4
the Limits of \dot{V}_A/\dot{Q}	117

Contents • 5 •

Oxygen and Carbon Dioxide Transport by the Blood Gas Composition of Arterial and Venous Blood Oxygen Transport in the Blood Carbon Dioxide Transport by the Blood Control of Ventilation Control of Breathing Rhythm Ventilation Influenced by Po ₂ , Pco ₂ , and pH Role of the Lungs in Regulation of Acid-Base Balance Ventilatory Response to Acid-Base Changes Altered Ventilation Causes Acid-Base Changes	119 119 119 122 124 124 125 126 127
CHAPTER 6 GASTROINTESTINAL PHYSIOLOGY	128
General Organization	128
Components	128
Blood Supply	128
Control and Coordination	129
Neural and Chemical Control	129
General Organization	129
Neural Control	132
Chemical Control	132
Reflex Control of Motility	133
Motility	133
Chewing and Swallowing	133
Esophagus	136
Stomach	137
Small Intestine	138
Vomiting	140
Large Intestine or Colon Secretion	140
	141
General Principles Salivary Secretion	141
Gastric Secretion	142
Pancreatic Secretion	145
Bile Secretion	148 151
Digestion and Absorption	151
General Organization	153
Carbohydrate Digestion and Absorption	153
Protein Digestion and Absorption	154
Lipid Digestion and Absorption	156
Handling of Vitamins, Ions, and Water	158
	130

• 6 • Contents

CHAPTER 7 ENDOCRINE PHYSIOLOGY	161
Basic Principles and Organization	161
Definition of the Endocrine System	161
Chemical Nature of Hormones	161
Mechanism of Hormone Action	161
Synthesis and Release of Hormones	161
Control of Hormone Release	168
Hormone Transport in the Blood	168
Hypothalamus and the Pituitary Gland	169
General Organization	169
Hypothalamic Hormones Influence Anterior Pituitary	
Hormone Secretion	170
Anterior Pituitary Hormones	171
Posterior Pituitary	173
Thyroid Gland	174
General Organization	174
Synthesis of Thyroid Hormone	174
Control of Thyroid Hormone Secretion	176
Action of Thyroid Hormones	177
Adrenal Gland	178
General Organization	178
Adrenal Cortex	178
Hormone Synthesis	178
Control of Hormone Secretion	179
Glucocorticoid Action	181
Androgen Action	183
Pathology	183
Adrenal Medulla	184
Endocrine Pancreas	185
General Organization	185
Insulin	185
Glucagon	187
Somatostatin	188
Diabetes Mellitus	189
Calcium and Phosphate Regulation	190
General Considerations	190
Parathyroid Gland	191
Vitamin D	192
Calcitonin	192
Reproductive Endocrinology	193
Sexual Differentiation	193
Puberty	195

Contents	• 7 •
Male Reproductive System	196
Female Reproductive System	199
Pregnancy	201
CHAPTER 8 TEMPERATURE REGULATION	205
Basic Principles and Organization	205
Physics of Heat Transfer	205
Sensing Body Temperature	206
Sweat Glands	207
Reflex Compensation for Body Temperature Changes	208
Reflex Response to Cold	208
Reflex Response to Heat	209
Index	211

$C \quad H \quad A \quad P \quad T \quad E \quad R \quad \cdot \quad 1$

HOMEOSTASIS

DEFINITION OF PHYSIOLOGY

• Physiology is the study of how things work.

Knowing the names of components and how they are assembled into a working system is important so that you can talk about them. For example, to talk about how an automobile engine works and how to fix it, you need a vocabulary describing the components of the engine. You need to be able to identify a carburetor, an air filter, a spark plug, an oxygen sensor, a camshaft and so on. You also need to know their location on the engine in case they are missing or inappropriately positioned. Naming the component parts of the human body is the purview of histology and gross anatomy.

You cannot be a competent mechanic, however, if you do not know what the component parts do and how they interact with one another. Understanding how the parts of the human body work together is the purview of physiology.

BASIC PRINCIPLE OF PHYSIOLOGY

- Homeostasis is the basic principle of physiology.
- Homeostasis is the maintenance of a constant environment.

Homeostasis is the maintenance of a constant environment. What enables us to live, work, and learn under changing conditions of temperature and humidity is to be able to surround ourselves with a hospitable environment generated by systems that heat, cool, and dehumidify the air. Whether in buildings, homes or

• 2 • Chapter I

automobiles, these systems are in constant struggle with the external environment. They are trying to maintain a hospitable internal environment against an inhospitable external environment. The body does the same thing. For the body, the external environment may be the outside physical world or the environment surrounding individual cells or organs.

To understand physiology is to understand how the body's homeostatic systems work. A key to learning physiology is to organize the information into homeostatic systems.

COMPONENTS OF A HOMEOSTATIC SYSTEM

- · Regulated variable is a variable to be kept constant.
- Set point is the desired value for the regulated variable.
- Sensors assess current status of the regulated variable.
- Feedback controller compares current conditions with the set point.
- Effector brings current status of regulated variable into line with the set point.

Any homeostatic system has five common components (see Figure 1–1). The first component is the thing that needs to be kept constant. In a house this may be the temperature. This is called the *regulated variable*. Temperature, blood pressure, and the blood content of glucose, oxygen, and potassium ions are examples of regulated variables in the body. The body wants these variables to stay at a certain level. Not everything is a regulated variable. Heart rate, cardiac output, vascular resistance, urine output, and breathing rate are not regulated variables. These things may change, but they usually change in order to keep the regulated variable constant. If you remember what things are regulated variables, you will be a long way toward understanding the details of the homeostatic responses of the body. Once you know the regulated variable, in many cases you will be able to identify intuitively how the body might keep it constant.

Another aspect of a homeostatic system is that it must "know" what is normal. "Normal" is where the regulated variable should be. This normal condition is called the *set point*. For example, if the thermostat in your house is set at 76°F, this temperature is the set point that the air conditioning system tries to maintain. For every regulated variable there is a set point. Therefore, the body has set points for temperature, blood pressure, and the blood content of oxygen, glucose, and potassium. You need to know the value of these set points so that you will recognize if something is wrong. If my wife and I don't agree on the set point for the thermostat, I might interpret a temperature greater than 76 as a sign that the air conditioner is broken. However, this may be the set point that my wife has selected. Some diseases involve changes in the body's set point. You shiver when

Homeostasis • 3 •

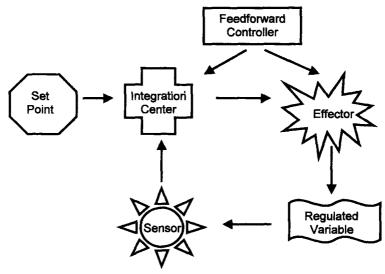


Figure 1-1
A standard homeostatic system consists of five elements: set point, sensor, integration center, effector, and regulated variable. Most homeostatic systems are designed to keep the regulated variable equal to the set point.

you have a fever because the temperature set point of your body has been increased. Your body tries to generate heat to raise its temperature by contracting the skeletal muscles. High blood pressure (hypertension) can be maintained because the set point for blood pressure is increased and the body initiates responses to maintain the blood pressure at this elevated level. So, it is important to know the normal set point and to realize that the set point can be changed as part of a disease process. An illness can result from the use of normal body responses to maintain an abnormal set point.

The third component of a homeostatic system is some mechanism by which the body can "know" the current conditions. There has to be a *sensor* that monitors the internal environment. For example, the thermostat senses the air temperature in your house. For every regulated variable there has to be a sensor. Therefore, the body has sensors for temperature, blood pressure, blood osmolarity, and the blood content of glucose, oxygen, and potassium, to name a few. Part of the study of physiology is the study of these sensors. You will learn where they are located, how they sense, the nature of their response to changes in the regulated variable, and where they send their information.

The information from the sensor about the current value of the regulated variable is useless if there is no way to compare the signals coming from the sensor with the set point. There has to be a *feedback controller* or *integrating center*. The thermostat in your house compares the current air temperature as sensed by

· 4 · Chapter 1

the thermometer with the set point temperature you selected. If the thermometer indicates that the air temperature is higher than the set point, the air conditioning will turn on. It will remain on until the thermometer indicates that the air temperature is now equal to the set point, that is, "normal." The body has multiple feedback controllers that are in discrete locations in the brain. You will learn the locations of these controllers, what input they receive, and how they respond under specific circumstances.

In the example of a home air conditioner, the feedback controller had a way to produce change—to alter the internal environment so that the actual air temperature became equal to the set point. A homeostatic system must have an *effector*, that is, some way to produce a change. The home air conditioner is the effector that cools the air and blows the cooled air around inside the house in order to return the temperature to the set point. The body also has effectors and you will be spending a lot of your time understanding them. For example, to maintain temperature, the body uses skin blood flow, sweat production, and skeletal muscle contraction as effectors to either lower or increase body temperature to keep it at the set point. To maintain blood pressure the body alters the pumping action of the heart through changes in its rate of beating and its output per beat (stroke volume), the resistance of the vasculature to blood flow, and the volume of blood.

CHARACTERISTICS OF HOMEOSTASIS

- Effectors may have opposing actions.
- Negative feedback is the process that prevents change.
- Positive feedback is the process that perpetuates change.
- Feedforward control is outside stimuli that alter the normal feedback response.

Returning again to the example of a home air conditioner, notice that if the temperature of the house falls below the set point, nothing happens. The air conditioning system only prevents the house temperature from rising above the set point. It does nothing to actively warm the house if the temperature falls below he set point. For example, the furnace does not turn on if the temperature falls below a set point of 76°F. Few if any systems in the body work this way. The great majority of systems are constructed so that a corrective response is initiated f conditions move above or below the set point. This means that the effectors have opposite or competing actions.

This can be seen at two levels. At the level of a given regulated variable, such as temperature, some effectors raise temperature and some decrease temperature. They compete with or oppose each other to keep temperature constant. Around each regulated variable there is a constellation of effectors each exerting an action. These effects balance, keeping the temperature constant. A steady state

Homeostasis • 5 •

is established because of these competing actions. On a more global scale, conflicts can develop between effectors interacting to maintain different regulated variables. For example, when you run in a hot, humid environment, there is a conflict between the effectors that are trying to maintain body temperature and those that are trying to maintain blood pressure. As your body temperature rises, more blood is directed to your skin to try to lower body temperature. However, this means that there is less blood to supply exercising muscle. Something has to give. In this example, temperature wins. The body does not want to "cook" the brain, so skeletal muscle blood flow is sacrificed to preserve appropriate temperature. So there is a hierarchy to the regulated variables. This is a very important point, which, if forgotten, can lead to confusion.

A term used to describe the process by which a regulated variable is maintained constant is *negative feedback*. Discrepancies between the set point and the regulated variable set into motion processes that attempt to return the regulated variable to the set point. If blood pressure rises, actions are taken to lower blood pressure. The initial response elicits an opposite response. This is a closed system that is self-correcting. Sometimes, however, there are situations where the initial response produces further change in the same direction. This is self-perpetuating and is called *positive feedback*. Changes in ion flux that initiate an action potential, blood coagulation, and ovulation are examples of positive feedback systems. There are not many such systems in the body because they do not keep things constant.

There are also situations when information comes from outside the negative feedback loop, information not detected by the sensor, that initiates change. This information usually comes from the brain as it responds to input from sensors outside the feedback loop. A good example is the response to a frightening experience. Your heart rate, blood pressure, and breathing rate increase because of central stimulation, not because of some change in a regulated variable. This type of input is called *feedforward control*. The intrinsic negative feedback systems would antagonize feedforward control unless the set point is changed.

COMMUNICATION IS AN ESSENTIAL ELEMENT OF A HOMEOSTATIC SYSTEM

- Two languages of communication are chemical and electrical.
- Characteristics of communication are distance, speed, distribution.

The sensor has to communicate with the feedback controller and the feedback controller has to communicate with the effector. There are essentially two languages of communication. One is chemical and the other is electrical. These will be developed in later chapters.

• 6 • Chapter 1

Communication has several characteristics: (1) distance: short vs. long; (2) speed: fast vs. slow; and (3) distribution: focused vs. diffuse. Communication occurs over distances as short as the environment surrounding a single cell. Cells can stimulate themselves, called autocrine stimulation, or their neighbor, called paracrine stimulation through the release of chemical agents. Communication can also occur over long distances, such as a nerve cell located in the spinal cord sending a process out to the end of the finger to stimulate a muscle cell. Communication can be fast, again like nerve stimulation of a muscle cell or the electrical communication between cells during the heartbeat. And it can be slow. Slow communication occurs when the transmission of the chemical is determined by its distribution in the blood. The response to a hormone is intrinsically slower than that to nerve stimulation. Finally, communication can be very focused, such as the activation of single muscle cells in the eye in order to focus on an object. And it can be diffuse, such as when epinephrine, released from the adrenal medulla when blood pressure falls, acts on the heart and the vasculature throughout the whole body.

$C \quad H \quad A \quad P \quad T \quad E \quad R \quad \cdot \quad 2$

CELL PHYSIOLOGY

MOVEMENT OF MOLECULES ACROSS CELL MEMBRANES

General Properties

- Lipid composition of the cell membrane limits transmembrane movement of molecules.
- The cell membrane is semipermeable because channel and carrier molecules enable some molecules to cross the membrane.
- Channels are proteins that form holes in the cell membrane enabling specific water-soluble molecules to pass in and out of the cell.
- Carriers are proteins that physically move specific molecules across the cell membrane.

The mammalian cell membrane is composed of two layers of lipids (fat) in which protein molecules are embedded. The water-loving (hydrophilic) ends of the lipids face either the exterior or interior of the cell while the water-hating (hydrophobic) ends of the lipid face the interior of the membrane. The protein molecules embedded in this sea of lipids may be large enough to completely span the thickness of the membrane, or they may be confined to one side or the other of the membrane. These proteins form structures such as chemical receptors, attachment points to the extracellular matrix, and transport molecules.

Because of the lipid composition and molecular organization of the cell membrane many molecules cannot cross without assistance. The cell membrane is therefore, said to be selectively permeable or *semipermeable*. Some of the proteins in the cell membrane form structures that permit transmembrane movement of such molecules. There are two ways that the cell gets molecules through the