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Modelling transport and mixing by turbulence in the
complex flows that constantly arise in engineering and in

the environment is one of the greatest twenty-first-century
challenges for CFD. Yet, too often, because the numerical
challenge is also so great, commercial CFD codes adopt
simplistic turbulence models that have little validity

outside the two-dimensional flows devised in the university
laboratory. This highly readable volume introduces the reader
to a level of modelling that respects the complexity of the
physics of turbulent flows — second-moment closure.

Following introductory chapters providing essential
physical background, the book examines in detail the
processes to be modelled, from fluctuating pressure
interactions to diffusive transport, from turbulent time and
length scales to the handling of the semi-viscous region
adjacent to walls. It includes extensive examples ranging
from fundamental homogeneous flows to three-dimensional
industrial and environmental applications. A major chapter
examines successive simplification of the models for particular
classes of flow, from explicit algebraic second-moment (EASM)
closures to linear eddy-viscosity models, including the very
simple mixing-length hypothesis. This path enables the reader
to see the place of these simpler schemes in the hierarchy of
RANS closures and the conditions under which they may be
expected to give satisfactory predictions.

This book is ideal for CFD users in industry and academia
who seek expert guidance on the modelling options available,
and for graduate students in physics, applied mathematics and
engineering who wish to enter the world of turbulent flow CED
at the advanced level. i
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MODELLING TURBULENCE IN ENGINEERING
AND THE ENVIRONMENT

Second-Moment Routes to Closure

Modelling transport and mixing by turbulence in the complex flows that constantly arise
in engineering and in the environment is one of the greatest challenges for CFD in the
twenty-first century. Yet, too often, because the numerical challenge is also so great,
commercial CFD codes adopt simplistic turbulence models that have little validity outside
the two-dimensional flows devised in the university laboratory. This highly readable volume
introduces the reader to a level of modelling that respects the complexity of the physics of
turbulent flows — second-moment closure.

Following introductory chapters providing essential physical background, the book
examines in detail the processes to be modelled, from fluctuating pressure interactions to
diffusive transport, from turbulent time and length scales to the handling of the semi-viscous
region adjacent to walls. It includes extensive examples ranging from fundamental homo-
geneous flows to three-dimensional industrial and environmental applications. A major
chapter examines successive simplification of the models for particular classes of flow,
from explicit algebraic second-moment (EASM) closures to linear eddy-viscosity models,
including the very simple mixing-length hypothesis. This path enables the reader to see the
place of these simpler schemes in the hierarchy of RANS closures and the conditions under
which they may be expected to give satisfactory predictions.

This book is ideal for CFD users in industry and academia who seek expert guidance on
the modelling options available, and for graduate students in physics, applied mathematics
and engineering who wish to enter the world of turbulent flow CFD at the advanced level.

KEMAL HANJALIC is Professor Emeritus at the Delft University of Technology in the
Netherlands. He has published extensively on the measurement, modelling and simulation
of turbulence including heat transfer, combustion and magneto-fluid dynamics. He is widely
recognized as a major contributor to the development of mathematical models of turbulence
and served for a decade as chairman of ERCOFTAC’s special-interest group on turbulence
modelling.
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Aerospace and Civil Engineering at the University of Manchester. He played a central role
in the development of turbulence modelling, working with his co-author in creating the first
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three-dimensional turbulent flows, especially in rotating systems, and to the development
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Preface

Scientific papers on how to represent in mathematical form the types of fluid
motion we call rurbulent flow have been appearing for over a century while, for
the last sixty years or so, a sufficient body of knowledge has been accumulated
to tempt a succession of authors to collect, systematize and distil a proportion of
that knowledge into textbooks. From the start a bewildering variety of approaches
has been advocated: thus, even in the 1970s, the algebraic mixing-length models
presented in the book by Cebeci and Smith' jostled on the book-shelves with
Leslie’s> manful attempt to make comprehensible to a less specialized readership
the direct-interaction approach developed by Kraichnan and colleagues. As the
progressive advance in computing power made it possible to apply the emerging
strategy of computational fluid dynamics to an ever-widening array of industrially
important flows, however, eddy-viscosity models (EVMs) based on the solution of
two transport equations for scalar properties of turbulence (essentially, length and
time scales of the energy-containing eddies) emerged as the modelling strategy of
choice and, correspondingly, have been the principal focus in several textbooks on
the modelling of turbulent flows (for example, Launder and Spalding,’ Wilcox*
and Piquets).

Today, two-equation EVMs remain the work-horse of industrial CFD and are
applied through commercially marketed software to flows of a quite bewilder-
ing complexity, though often with uncertain accuracy. However, there has been
a major shift among the modelling research community to abandon approaches
based on the Reynolds-averaged Navier—Stokes (RANS) equations in favour of

Cebeci, T. and Smith, A. M. O., 1974, Analysis of Turbulent Boundary Layers, Ser. Appl. Math. Mech.
Vol. XV, Academic Press, New York.

Leslie, D. C., 1973, Developments in the Theory of Turbulence, Clarendon Press, Oxford.

Launder, B. E. and Spalding, D. B., 1972, Mathematical Models of Turbulence, Academic Press, London.
Wilcox, D. C., 2000, Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, CA.

Piquet, J., 1999, Turbulent Flows, Springer, Berlin,
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viii Preface

large-eddy simulation (LES) where the numerical solution for any flow adopts a
three-dimensional, time-dependent discretization of the Navier—Stokes equations
using a model to account simply for the effects of turbulent motions too fine in
scale to be resolved with the mesh adopted — that is, a sub-grid-scale (or sgs)
model. While acknowledging that LES offers the prospects of tackling turbulence
problems beyond the scope of RANS, a further major driver for this changeover
has been the manifold inadequacies of the stress-strain hypothesis adopted by lin-
ear eddy-viscosity models. While such a simple linkage between mean strain rate
and turbulent stress seemed adequate for a large proportion of two-dimensional,
nearly parallel flows, its weaknesses became abundantly clear as attention shifted
to recirculating, impinging and three-dimensional shear flows. Although an LES
approach will, most probably, also adopt an sgs model of eddy-viscosity type, the
consequences are less serious for two reasons. First, the majority of the transport
caused by the turbulent motion will be directly resolved by the large eddies and
secondly, the finer scale eddies that must still be resolved by the sub-grid-scale
model of turbulence will arguably be a good deal closer to isotropy. Thus, adopt-
ing an isotropic eddy viscosity as the sgs model may not significantly impair the
accuracy of the solution.

However, to overcome many of the weaknesses of linear EVMs used within
a RANS framework, it is quite unnecessary to upgrade one’s modelling to LES
level. Rather than adopting a linear algebraic relation to link stress and strain, one
can obtain the turbulent stresses by solving closed forms of the exact Reynolds-
stress equations. It is this approach that represents the main focus of the present
book, a modelling strategy known formally as second-moment closure, a label that
also embraces the corresponding modelling of turbulent heat and species fluxes.
This closure level, first advocated in the early 1950s,° has in principle a far greater
capacity than eddy-viscosity models for capturing the diverse influences of complex
strain fields, body forces or substantial transport on the evolution of the turbulent
stresses. This is because the direct effects of strain field, body forces and convective
transport on the turbulent stresses appear directly in the second-moment equations
in forms requiring no approximation! It is true that modelling is still needed, both
in the second-moment equations and in the scale-determining equation, the latter of
which must also be solved to complete closure. But, at second-moment level, one
can proceed further by way of analysis while several additional invariant parameters
become available to help shape compliance with limiting states of turbulence.

Admittedly, even with a well-constructed code explicitly designed for second-
moment closure (as many commercial solvers are not), such schemes require
typically twice as much computational resource as corresponding eddy-viscosity

% Rotta, J. C.. 1951, Statistische Theorie nichthomogener Turbulenz, Z. Phys.. 129, 547 and 131, 51.
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models. But this is a very small price to pay for predicting the flow correctly while
the computational costs will still usually be one or two orders of magnitude less
than the cost of obtaining an LES of the same flow.

Why, the reader may legitimately ask, if second-moment closure represents such
a major advance over eddy-viscosity approaches, has this situation not become
evident and widely accepted by potential users? The present authors can offer no
certain answer to that question. To those working at that closure level it is well
known. Indeed, in the more comprehensive current textbooks one will at least find
signposts to modern forms of second-moment closures. But perhaps such broad-
coverage treatments, while of inestimable value as reference sources, are unable
to justify the space for providing a detailed examination of particular modelling
forms or for showing a broad coverage of the successes and weaknesses of particular
models. Perhaps, we concluded, one needed a textbook that focused principally on
second-moment closure, that provided the background in sufficient depth, bringing
to light strategies from earlier decades which are still useful and also including the
latest models available. Finally, one needed a textbook that discussed in detail a
comprehensive range of applications so that potential users could judge the likely
utility of the schemes in the flows that interest them. It has been our aim, in the
pages that follow, to provide such a coverage.

The writers themselves began working together on second-moment closure in
the late 1960s and over the ensuing forty-odd years have repeatedly interacted
on research strategy in this field, both in specific collaborative research projects
and through the ERCOFTAC” special interest group in Turbulence Modelling. Our
views on closure modelling, if not identical, are sufficiently closely aligned that,
when we learned that each of us was contemplating preparing a textbook on the
subject, we quickly decided that we should pool our efforts and produce a joint
volume. Throughout, this has been an equal partnership and, as in all our joint
papers, our names are sequenced alphabetically.

To a neutral and knowledgeable reader the material presented may well be seen
as giving too great an emphasis to the authors’ own work. In part this ‘bias’ arises
from wanting to show the performance of particular models for a wide range of
test cases that (we have learned from experience) are sensitive to the modelling
assumptions. We trust, however, that the cited references make the connection
to (and the dependence on) the work of others plainly evident. Indeed, our hope
would be that having had their enthusiasm for second-moment closure stimulated
or re-awakened by the present text, many readers will be encouraged to plunge into
at least some of the other recent textbooks in turbulence modelling and, thereafter,
to read the original journal papers that are cited.

7 European Research Community on Flow Turbulence and Combustion.
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In fact, one of the choices made in producing this book is directly aimed at
encouraging the reader to progress into the original research literature. In presenting
different models, while the main ideas and underlying principles have been included
(along with examples of a model’s performance), in many cases we have not
given a complete mathematical statement still less the boundary conditions or
other essential numerical aspects of handling the equations appropriate to different
classes of flow.

While, in some respects, the book is more comprehensive in its coverage of
second-moment closure than most (perhaps all) alternative volumes on turbulence
modelling, there are also omissions about which some brief explanation needs
to be given. Although we make early reference to situations where the density
fluctuations in the convective transport term need to be acknowledged and modelled,
the reader will find that this is not a subject to which we return. The reason is simple:
we have ourselves done little work in the area so our position statement could only
be arrived at by borrowing conclusions from what others have written. It would, we
felt, be better for the interested reader, instead, to digest directly the views of those
with greater experience. In fact, two such individuals, Tom Gatski and Jean-Paul
Bonnet, have recently collaborated to produce a textbook specifically focused on
compressibility in high-speed flow® which we commend to the reader. Equally,
while both of us have made proposals for obtaining the turbulent thermal time
scale by solving an equation for the dissipation rate of temperature fluctuations, we
nevertheless nowadays prefer to adopt simpler practices ourselves. Thus, here we
leave Nagano’s® review to summarize the painstaking research and optimization
in this area carried out by Nagano and his colleagues. A final important area
where we offer no contribution is that of how to embed the concepts of turbulent
intermittency within the closure. Long ago Libby!? proposed a transport equation
for intermittency that has been used and developed over the ensuing decades by
numerous workers, especially those working in combustion and, more recently,
those attempting to predict transition from laminar to turbulent flow. In the latter
area the review by Savill'! gives an indication of the directions being followed to
broaden the range of such flows that can be tackled.

Despite the care we have tried to apply in checking the typescript, we know
there will inevitably be errors in what is written, whether just typographical slips
or interpretational errors on our part. Readers are warmly invited to draw these

Gatski, T. B. and Bonnet, J-P., 2009, Compressibility, Turbulence and High-Speed Flow, Elsevier, Oxford.
Nagano, Y., 2002, Modelling heat transfer in near-wall flows, in Closure Strategies for Turbulent and Transi-
tional Flows (Ed. B. E. Launder and N. D. Sandham), 188-247, Cambridge University Press, Cambridge.
Libby, P. A., 1975, Prediction of intermittent turbulent flows, J. Fluid Mech. 68, 273-295.

I Savill, A. M., 2002b, New strategies in modelling by-pass transition, in Closure Strategies for Turbulent and
Transitional Flows (Ed. B. E. Launder and N. D. Sandham), 493-521, Cambridge University Press, Cambridge.
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to our attention (in writing, please) so that in any future re-printing they may be
corrected.

In closing, we express our thanks to our host institutions for the infrastructure
support they have provided. In the case of KH this also includes La Sapienza Uni-
versity, Rome where, as the holder of an EU-funded Marie Curie Chair, he spent
much of the period during the book’s preparation. Finally, we are especially con-
scious that the task of preparing this book would not have been realizable without
the contributions of many past and present colleagues. In particular, we offer our
thanks and appreciation to Tim Craft, Song Fu, Hector Iacovides, Suad Jakirli¢,
SaSa KenjereS, Remi Manceau, Kazuhiko Suga and the late Ibrahim Hadzi¢. We
have also benefited greatly over the years from inputs on various aspects of mod-
elling from Peter Bradshaw, Paul Durbin, Tom Gatski, Bill Jones, Nobu Kasagi,
Hiroshi Kawamura, Dominique Laurence, Michael Leschziner, John Lumley, Yasu
Nagano, Steve Pope, Wolfgang Rodi, Roland Schiestel, Ronald So, Dave Wilcox
and Micha Wolfshtein. Finally, we extend a special thank you to the research stu-
dents and post-doctoral researchers — too numerous to name individually — with
whom we have shared the occasional frustrations but, ultimately, the pleasurable
satisfactions of turbulence-modelling research.

Kemal Hanjalié, Delft
Brian Launder, Manchester



xii

Nomenclature

Lumley’s two-component stress (‘flatness’) parameter,
A=1-9/8(A; — A3z)

second invariant of stress anisotropy, A, = aj;jaj;

third invariant of stress anisotropy, Az = a;ajaxi

scalar flux correlation function, Ay = (Bu,-)z/(ﬁuk i)
coefficient in van Driest’s near-wall form of mixing-length
hypothesis

Reynolds-stress anisotropy tensor, a;; = u;u;/k — %5,- j
magnetic flux density

bij = a;/2

Second-order tensor in the model for @y;,, Eq (4.86)
third-order tensor in the model for @y;,, Eq (4.49)
fourth-order tensor in the model for @;;,, Eq (4.39)

species concentration

pressure coefficient, 2(P, — Px)/ ;oU(fo

constant in Kolmorov’s —% law for energy variation with wave
number, Eq (3.6) »

convection of the Reynolds stress tensor u;u;

convection of the turbulent scalar flux Ou;

convection of scalar variance 62

convection of a turbulence variable ¢

coefficient in eddy-viscosity formula

specific heat at constant pressure

coefficients of source/sink terms in the modelled e-equation
coefficients in the models of the pressure-strain term
diameter, channel width

complementary stress production tensor,

D;j = — (wurd Uy /dx; + wurdUs /9x;)
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Nomenclature Xiii

total diffusion of the Reynolds stress tensor

turbulent diffusion of the Reynolds stress tensor u;u; by
pressure fluctuations, Eq (2.20)

turbulent diffusion of the Reynolds stress tensor u;u; by
velocity fluctuations, Eq (2.18)

molecular diffusion of the Reynolds stress tensor u;u ;,

Eq (2.18)

total diffusion of scalar flux Gu;, Eq (2.22)

turbulent diffusion of scalar flux fu; by pressure fluctuations,
Eq (2.22, 2.25)

turbulent diffusion of scalar flux Au; by velocity fluctuations,
Eq (2.22, 2.25)

thermal molecular diffusion of scalar flux u;, Eq (2.22, 2.25)
viscous diffusion of scalar flux fu;, Eq (2.22, 2.25)

total diffusion of scalar variance 62, Eq (3.20)

total diffusion of a turbulence variable ¢

turbulent diffusion of variable ¢ by pressure fluctuations
turbulent diffusion of variable ¢ by velocity fluctuations
molecular diffusion of variable ¢

two-component-limit parameter for dissipation tensor,
E=1-3(E —Ej)

integration constant in log-law, £ 2 8.4 for a smooth wall
second invariant of e, E; = ejjej;

third invariant of e;;, E3 = ejiejiey;

contribution by the Fourier-mode wave number « to the
turbulent kinetic energy

fluctuating electric potential

stress dissipation-rate anisotropy tensor, ¢;; = &;;/& — %Si ¥
turbulent stress flux production due to all body forces,

Eq (2.19)

turbulent scalar flux production due to all body forces, Eq (2.23)
production of a turbulence variable ¢ by all body forces
scalar variable in Durbin’s elliptic relaxation EVM
fluctuating body force

wall damping function in GL and HJ low-Re RSM

turbulent stress production due to gravitational force, Egs (2.19,
4.74)

gravitational acceleration constant

gravitational vector

height of the step in flow over a backward-facing step
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Nomenclature

boundary-layer shape factor, §"/6 (note §; = 8%, 8, =0,

H; = H)

Hartmann number

half-width of a plane channel

enthalpy, h = [ ¢,dT

alternative notation for the second invariant of stress anisotropy,
I = b;jbji/2 = A>/8

alternative notation for the third invariant of stress anisotropy
Il = bbby /3 = A3 /24

Jayatilleke function (relative resistance of sublayer to heat and
momentum transfer from a smooth wall), Eq (8.5)

acceleration parameter, K = (v/ Uozo)(a'Uoc/d.x)

mean flow kinetic energy, K = %Uf

turbulent kinetic energy, k = Ju;u;

characteristic flow dimension

integral turbulent length scale (usually defined as k*/?/; for
definitions of bounded length scale in elliptic relaxation models
see Eqs (6.74, 7.45))

turbulence length scale K%/ /e

alternative turbulence length scale (used in the Wilcox—Rubesin
model), ¢ = ¢,/

stress production due to fluctuating (electro)-magnetic (Lorenz)
force, Eq (4.95)

bulk-flow Stuart number, N = o BJL/pU,

wall-normal unit vector

instantaneous, mean and fluctuating pressure

non-dimensional pressure gradient P = v(d P/Bx)/pr
wall-adjacent grid node

stress production due to mean velocity gradient, Eq (2.18)
production of turbulent scalar flux fu;, Eq (2.22)

production of the mean-square scalar variance 02, Eq (3.20)
production of a turbulence variable ¢ by gradients of mean and
fluctuating properties

molecular Prandtl-Schmidt number

wall heat flux

pipe radius

thermal-to-mechanical time scale ratio, R = 62¢ / keoy

Rayleigh number, Ra = g(®,, — (~),(,I)L3/a v, where L is a
characteristic flow dimension, ®,, and ®,,; denote the wall and
reference temperatures respectively
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Re;
Rey
Re,,

Re,
Res,

Reg

Re,

Re;

Ry

Ri

Rii(x, x)
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Nomenclature XV

Reynolds number of flow behind a backward-facing step of
height H

Reynolds number based on a characteristic flow dimension L
and velocity Uy, Re; = UpL/v

magnetic Reynolds number, oo UL ((oo) ™" is known as the
magnetic diffusivity)

channel flow Reynolds number based on the mean (bulk)
velocity, Re,, = U,,2h/v

turbulent Reynolds number, Re, = k% /(ve)

Reynolds number based on Stokes thickness and maximum
free-stream velocity

Reynolds number based on momentum thickness,

Rey = U0/v

Reynolds number based on friction velocity and channel
half-width, Re, = U h/v

Taylor micro-scale Reynolds number, Re; = \/u?l /v

flux Richardson number, —Gy /P;

gradient Richardson number, R0 ¢

two-point correlation tensor, R;;(X, X) = u;(X)u j(x')

bulk rotation number (various definitions according to specific
application comprising rotating velocity divided by some other
reference velocity)

stress production due to system rotation, Eqs (2.19, 4.68)
radial coordinate

position vector

mechanical-to-scalar time scale ratio, r = kegg /(ﬁs) =1/R
invariant of the non-dimensional mean-strain tensor

8 = o RS

dimensionless mean strain (in simple shear),

S = 2(k/e)($12812)'/* = (k/e)dU /dy

salt concentration (‘salinity”)

invariant of the strain rate tensor S = ,/§;;S;;

alternative invariant of mean strain tensor used by Yakhot’s
group, S* = +/2S, Eq (5.4)

mean rate of strain tensor, §;; = %(BU,-/axj +aU;/0ox;)
non-dimensional mean rate of strain, S;; = S;k/&

swirl intensity, a dimensionless ratio of axial to circumferential
momentum S,, = 27 [, UWr?dr/x R*U? or

Sy = fOR UWr’dr/R fOR U?rdr
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Ssl, SF2

Sij

T

Wwall
Wi
W,'_,'
Wi
Xi, X
X, Vs 2
B 4

y+

y*
Y12

Nomenclature

general symbols for the source and sink terms in the g-equation,
respectively

fluctuating rate of strain 5;; = %(8u,~/3xj + 0uj/0x;)
temperature [°K]

characteristic turbulence time scale (usually 7 is taken as k/¢,
but not in Eq (5.23); for definitions of bounded time scale in
elliptic relaxation models see Eqs (6.74, 7.35 and 7.44))
spectral energy transfer rate

tensor integrity bases

time

streamwise mean velocity component

Cartesian components of mean velocity

instantaneous, mean and fluctuating velocity vector

bulk velocity

wall velocity

free stream velocity

friction velocity, /7, /p

mean velocity non-dimensionalized with friction velocity,
Ut =U/U,

mean velocity for use in wall functions,

U*=Uk'?/U? = pUk'? /1,

streamwise velocity change across free shear flow
kinematic Reynolds-stress tensor

Cartesian representation of turbulent velocities

mean velocity component in direction y

Valensi number, Va = R>w/v

invariant of the non-dimensional rotation rate, W = ,/ W,-_,- W, j
spanwise and circumferential velocity component

Womersley number, Wo = R./w/v = +/Va

circumferential velocity of rotating wall

mean rate-of-rotation tensor, W;; = 1(dU;/dx; — dU;/dx;)
non-dimensional mean rate of rotation tensor, W, v = Wisk/fe
fluctuating rate-of-rotation tensor, w;; = 1(du; /dx; — du;/09x;)
Cartesian coordinates in index and vector notation

Cartesian coordinates

wall distance

non-dimensionalized wall distance, y* = U, y/v

alternative normalized wall-distance, k'/?y/v

half-width of plane jet or wake



