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Preface

The first fifteen chapters of these lectures (omitting four to six chapters
each year) cover a one term course taken by a mixed group of senior un-
dergraduate and junior graduate students specializing either in mathematics
or physics. Typically, the mathematics students have some background in ad-
vanced analysis, while the physics students have had introductory quantum
mechanics. To satisfy such a disparate audience, we decided to select material
which is interesting from the viewpoint of modern theoretical physics, and
which illustrates an interplay of ideas from various fields of mathematics such
as operator theory, probability, differential equations, and differential geome-
try. Given our time constraint, we have often pursued mathematical content
at the expense of rigor. However, wherever we have sacrificed the latter, we
have tried to explain whether the result is an established fact, or, mathemat-
ically speaking, a conjecture, and in the former case, how a given argument
can be made rigorous. The present book retains these features.

Prerequisites for this book are introductory real analysis (notions of vec-
tor space, scalar product, norm, convergence, Fourier transform) and com-
plex analysis, the theory of Lebesgue integration, and elementary differential
equations. These topics are typically covered by the third year in mathematics
departments. The first and third topics are also familiar to physics undergrad-
uates. Those unfamiliar with Lebesgue integration can think about Lebesgue
integrals as if they were Riemann integrals. This said, the pace of the book is
not a leisurely one and requires, at least for beginners, some amount of work.

Even in dealing with mathematics students we have found it useful, if
not necessary, to review basic mathematical notions such as the spectrum of
an operator, and the Gateaux or variational derivative, which we needed for
the course. Moreover, to make the book relatively self-contained, we recall
and sometimes discuss the basic notions mentioned above. As a result, the
text is interspersed with mathematical supplements which occupy in total
about a third of the material. A mathematically sophisticated reader can
skim through them, or skip them altogether, and concentrate on physical
applications. On the other hand, readers familiar with the physical content



VI Preface

of quantum mechanics, and who would like to enhance their mathematics,
could concentrate on those detours and consider the physics chapters as an
application of the mathematics in a familiar setting.

Though we tried to increase the complexity of the material gradually, we
were not always successful, and first in Chapter 8, and then in Chapter 14,
there is a leap in the level of sophistication required from the reader.

This book consists of fifteen main chapters and one supplementary chapter,
Chapter 17. The latter chapter is more technical than the preceding material.
We did not include many standard topics which are well-covered elsewhere.
These topics are referenced in Chapter 18, where we also give some comments
on the literature and further reading.

Acknowledgment: The authors are grateful to W. Hunziker, Yu. Ovchin-
nikov, and especially J. Frohlich and V. Buslaev for useful discussions, and to
J. Feldman, G.-M. Graf, I. Herbst, L. Jonsson, E. Lieb, B. Simon and F. Ting
for reading parts of the manuscript and making useful remarks. The second
author acknowledges his debt to his many collaborators, and especially to V.
Bach, J. Fréhlich, Yu. Ovchinnikov, and A. Soffer.

Vancouver /Toronto, Stephen Gustafson
September 2002 Israel Michael Sigal

Preface to the Second Printing

For the second printing, we corrected a few misprints and inaccuracies; for
some help with this, we are indebted to B. Nachtergaele. We have also added
a small amount of new material. In particular, Chapter 10, on perturbation
theory via the Feshbach method, is new, as are the short sub-sections 8.9
and 9.12 concerning the Hartree approximation and Bose-Einstein condensa-
tion. We also note a change in terminology, from “point” and “continuous”
spectrum, to the mathematically more standard “discrete” and “essential”
spectrum, starting in Chapter 5.

Vancouver/Toronto, Stephen Gustafson
July 2005 Israel Michael Sigal
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1

Physical Background

In this introductory chapter, we present a very brief overview of the basic
structure of quantum mechanics, and touch on the physical motivation for
the theory. A detailed mathematical discussion of quantum mechanics is the
focus of the subsequent chapters.

1.1 The Double-Slit Experiment

Suppose a stream of electrons is fired at a shield in which two narrow slits
have been cut (see Fig. 1.1.) On the other side of the shield is a detector
screen.

N & shield
electron | '\l't

e slits
gun 1 /

> _

> screen —

Fig. 1.1. Experimental set-up.

Each electron that passes through the shield hits the detector screen at
some point, and these points of contact are recorded. Pictured in Fig. 1.2 and
Fig. 1.3 are the intensity distributions observed on the screen when either of
the slits is blocked.
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- P, (brightness)

NN AN\ %

[

Fig.1.2. First slit blocked.

AN

A

NN N A N 2

Fig.1.3. Second slit blocked.

N
[ <
TS

Fig.1.4. Both slits open.

NN N N\ 2

. When both slits are open, the observed intensity distribution is shown in
Fig. 1.4.

Remarkably, this is not the sum of the previous two distributions; i.e.,
P # P; + P,. We make some observations based on this experiment.

1. We cannot predict exactly where a given electron will hit the screen, we
can only determine the distribution of locations.
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2. The intensity pattern (called an interference pattern) we observe when
both slits are open is similar to the pattern we see when a wave propagates
through the slits: the intensity observed when waves E; and E; (the waves
here are represented by complex numbers encoding the amplitude and
phase) originating at each slit are combined is proportional to | E; + Ep|? #
|E1|2 + | E2|? (see Fig. 1.5).

7)) S

Fig.1.5. Wave interference.

NN N N

We can draw some conclusions based on these observations.

1. Matter behaves in a random way.
2. Matter exhibits wave-like properties.

In other words, the behaviour of individual electrons is intrinsically random,
and this randomness propagates according to laws of wave mechanics. These
observations form a central part of the paradigm shift introduced by the theory
of quantum mechanics.

1.2 Wave Functions

In quantum mechanics, the state of a particle is described by a complex-valued
function of position and time, ¥(z,t), z € R3, t € R. This is called a wave
function (or state vector). Here R? denotes d-dimensional Euclidean space,
R = R!, and a vector z € R? can be written in coordinates as z = (z1,...,Zq)
with T; € R.

In light of the above discussion, the wave function should have the following
properties.

1. |¥(-,t)|? is the probability distribution for the particle’s position. That
is, the probability that a particle is in the region 2 C R3 at time ¢ is
Jo, l¥(z,t)|%dz. Thus we require the normalization [p, [¥(z,t)%dz = 1.

2. 1 satisfies some sort of wave equation.
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For example, in the double-slit experiment, if 1; gives the state beyond the
shield with the first slit closed, and 1, gives the state beyond the shield with
the second slit closed, then i = 1; + 1> describes the state with both slits
open. The interference pattern observed in the latter case reflects the fact that

9|2 # |91]2 + [42]?.

1.3 State Space

The space of all possible states of the particle at a given time is called the state
space. For us, the state space of a particle will usually be the square-integrable
functions:

I*R%) = {$ :R® - C| / () *dz < oo}
R3

(we can impose the normalization condition as needed). This is a vector space,
and has an inner-product given by

.0 := [ d@)oa)da

(in fact, it is a “Hilbert space” — see Section 1.5)

1.4 The Schrédinger Equation

We now give a motivation for the equation which governs the evolution of a
particle’s wave function. This is the celebrated Schrédinger equation.
Our equation should satisfy certain physically sensible properties.

1. The state 9(-,tp) at time ¢t = to should determine the state (-, t) for all
later times t > to (causality).

2. If 4 and ¢ are evolutions of states, then a1 + B3¢ (, B constants) should
also describe the evolution of a state (the superposition principle).

3. In “everyday situations,” quantum mechanics should be close to the clas-
sical mechanics we are used to (the correspondence principle).

The first requirement means that 1 should satisfy an equation which is first-
order in time, namely

0
= = Ay (1.1)

for some operator A, acting on the state space. The second requirement implies
that A must be a linear operator.

We use the third requirement in order to find the correct form of A. We
first recall that one of the fundamental equations of classical mechanics is
first-order in time. It is the Hamilton-Jacobi equation,
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96 _hev.8) (1.2)
at - ] z e

where h(z,k) = Ikl + V(z) is the classical Hamiltonian function, V is the
potential, m is the mass, and S(z,t) is the classxcal action. This equation, in
turn, is similar to the eikonal equation,

99,9

(G-
which is a high-frequency approximation of the wave equation for u = ae®®.
We make an analogy between the passage from the wave equation to the
eikonal equation (that is, from wave optics to geometric optics) and the pas-
sage from quantum mechanics to classical mechanics. Thus, we require that
Equation (1.1) (whose form we are seeking) has solutions of the form

P(z,t) = a(z,t)eSE@O/P

—|V.0* =

where h is some very small constant, with S satisfying equation (1.2). Assum-
" ing a, S, and their derivatives are of order one in A, then to the leading order
in A, ¢ satisfies the equation

13} h?
— = ——AzY(z, |4 i £); ;
ihoh(3,t) = — 3 Ad(z,8) + V(2 (2, ) (13)
The operator A = Zg=1 6]2 is the Laplacian (in spatial dimension 3). This

equation is of the desired form (1.1). In fact it is the correct equation, and is
called the Schriodinger equation. It can be written as

ih%zﬁ = Hy (1.4)

where the linear operator H, given by

h2
Hy = —o = A+ V)

is called a Schrédinger operator.
The small constant & is Planck’s constant; it is one of the fundamental
constants in nature. For the record, its value is roughly

h = 6.6255 x 10™27 erg sec.

Example 1.1 Here are just a few examples of potentials.

1. Free motion : V = 0.

2. A wall: V =0 on one side, V = oo on the other (meaning 1) = 0 here).
3. The double-slit experiment: V = oo on the shield, and V = 0 elsewhere.
4. The Coulomb potential : V(z) = —a/|z| (describes a hydrogen atom).
5. The harmonic oscillator : V(z) = -’%"—2|x|2

We will analyze some of these examples, and others, in Chapter 7.



