Programming in F

True BASIC

Problem Solving with Structure and Style ,
Stewart Venit (N

Sandra Schleiffers

)
y

PROGRAMMING w
IN TRUE BASIC

PROBLEM SOLVING WITH STHUCTURE AND STYLE

SECOND EDITION

STEWART M. VENIT |

~ California State University, Los Angeles

and |

SANDRA M. SCHLEIFFERS

~ Colorado State University, Fort Collins

PWS Pubhshmg , o
An Imprint of Brooks/Cole Publishing Company
1@P°An International Thomson Publishing Company

Pacific Grove ¢ Albany ° Belmont * Bonn « Boston ¢ Cincinnati * Detroit * Johannesburg » London « Madrid
Melboume * Mexico City » New York » Paris * Singapore ¢ Tokyo . Toronto . Washmgtun .

Sponsoring Editor: Mike Sugarman Manuscript Editor: Julie Hollist

Editorial Assistant: Kathryn Schooling Interior Illustration: Rolin Graphics and Heather Theurer
Project Development Editor: Suzanne Jeans Production/Design/Typesetting: WestWords, Inc.
Marketing: Nathan Wilbur Cover Design: Vernon T. Boes

Communications: Maraget Parks Cover Photo: Ed Young Photography

Production Coordinator: Kelsey McGee Cover Printing/Printing and Binding: WebCom Limited

Several trademarks and/or service marks appear in this book. The companies listed below are the owners of the trademarks and or service
marks following their names.

True BASIC Inc.: True BASIC; Apple Computer, Inc.: Apple II. Apple Ilc, Applesoft BASIC, Macintosh, Macintosh Plus Commodore
International Ltd.: Commodore 64; Cray Research, Inc.: Cray X-MP; Digital Equipment Corporation: DEC, PDP-11, VAX-11 BASIC,
VAX-11 minicomputer; International Business Machines Corp.: IBM PC, System 360, IBM PS/2; Microsoft Corporation: Microsoft BASIC,
QuickBASIC, Visual BASIC; MITS: Altair 8800; Unisys Corporation: ENIAC, Unisys: Tandy Corporation: TRS-80; Borland
International, Inc.: Turbo BASIC

COPYRIGHT © 1999 by Brooks/Cole Publishing Company
A Division of International Thomson Publishing Inc.
ICDP The ITP logo is a registered trademark under license.

For more information, contact PWS Publishing at Brooks/Cole Publishing Company:

BROOKS/COLE PUBLISHING COMPANY International Thomson Editores

511 Forest Lodge Road Seneca 53

Pacific Grove, CA 93950 Col. Polanco

USA 11560 México, D. F., México
International Thompson Publishing Europe International Thomson Publishing GmbH
Berkshire House 168-173 Konigswinterer Strasse 418

High Holborn 53227 Bonn

London WCIV 7AA Germany

Englamd International Thomson Publishing Aisa
Nelson ITP 60 Albert Street

102 Dodds Street #15-01 Albert Complex

South Melbourne, 3205 Singapore 189969

ictoria, Australia International Thomson Publishing Japan

Nelson Canada Hirakawacho Kyowa Building, 3F
1120 Birchmount Road 2-2-1 Hirakawacho

Scarborough, Ontario Chiyoda-ku, Tokyo 102

Canada M 1K 5G4 Japan

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—
electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher, Brooks/Cole
Publishing Company, Pacific Grove, California 93950.

Printed in Canada
0w 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Venit, Stewart.
Programming in True BASIC : problem solving with structure and style / Stewart M. Venit and Sandra M. Schleiffers. — [2nd ed.]

p. cm.
Includes bibliographical references and index. oOKIS PRIy,
ISBN 0-534-95351-4 Ky ",
I. True BASIC (Computer program language) 1. Schleiffers, Sandra h *

M. 1L Title. 3 z
QA76.73.T65V46 1998 98-34943 3, <
005.26'2—dc21 cIp %8 peeyo

iv

PREFACE IS

PURPOSE

This text has two fundamental objectives: to teach programming concepts in general and
the elements of the True BASIC language in particular. We have placed great emphasis on
structured programming principles: problem solving, top-down modular program design,
structured coding, and programming style. Students using this text will learn to write read-
able, reliable, and well-documented programs, and be able to move on to more advanced
topics and/or other programming languages without having to unlearn bad habits.

PREREQUISITES

The prerequisites for this text are minimal. No prior programming experience is
required, and a single year of high school algebra should provide adequate preparation.
A few advanced concepts are presented in the later chapters for better prepared students
or for longer courses.

TRUE BASIC

True BASIC, a version of BASIC published by True Basic Incorporated, is one of the
ideal first programming languages. True to its ancestry, True BASIC is relatively easy
to learn, and it has two key advantages over earlier versions of BASIC: the True BASIC
dialect allows for truly structured programming and the True BASIC environment elim-
inates much of the frustration inherent in coding programs.

True BASIC is also a very powerful language, suitable for producing relatively
large and efficient programs. This text does not attempt to cover every facet of the lan-
guage, but instead provides students with a firm foundation that will enable them to
explore it further on their own if they wish.

Several versions of True BASIC are currently in use (Macintosh versions, DOS
versions, and Windows versions). All programs written in this text should run in the
various versions of True BASIC with the exception of the programs in Chapter 10
(Programming a Graphical User Interface). Chapter 10 was written specifically for the
latest Windows 95 and Macintosh versions (5.0-5.2) of True BASIC. The syntactical
differences among the various versions are slight. Therefore, with the exception of the
Chapter 10 programs, all programs will run under the latter versions of the language.
However, some programs may need slight modification when using the Macintosh
versions and when using PC versions of True BASIC earlier than 5.0. Specifically,
programs will have to be modified slightly in Chapter 8 (Sequential Files), and in
Chapter 9 (Graphics and Sound). Notes that describe these modifications are provided

h licable.
where applicable i

Xiv

Preface

FEATURES OF THE TEXT

10.

11.

12.

The text introduces the True BASIC language quickly—the first program
appears at the very beginning of the first chapter.

New statements are introduced through short programs or program segments,
avoiding at this point elaborate program design and long explanations.
Display boxes that show the form, action, and examples of newly introduced
statements are provided for easy reference.

Structured programming principles are emphasized throughout the text.
Program design, style, and maintenance are introduced in Chapter 1 and are
reinforced in every subsequent chapter.

All complete programs are written with good programming style. Style
Pointers are presented throughout the text.

All chapters contain applications—longer programs that illustrate the com-
plete program development process of analysis, design, coding, and testing.
(Most applications appear in the Focus on Problem Solving sections.)
Pseudocode and hierarchy charts are the primary program design tools.

The text contains a few relatively long illustrative programs (several hundred
lines each). These help students to see the need for program design, structured
coding, and good programming style.

Short self-test exercises (with answers in Appendix C) appear at the end of each
section. More detailed Review Exercise sets which contain short answer, debug-
ging, and skill builder exercises (with answers to the odd-numbered ones in
Appendix C) are supplied at the end of each chapter. Programming Problems,
which offer a wide range of difficulty, and Laboratory Projects, which consist of
debugging and maintenance problems, also appear at the end of every chapter.

A disk that contains the program files for the Laboratory Projects is packaged
with the text. Chapter 10 lab project programs will run only in True BASIC 5.2
SILVER or GOLD Versions, unless users have access to the True Control or
True Dial libraries from a previous 5.* edition. Macintosh adopters of the text
also should be able to use the Laboratory Projects disk that accompanies the
text. Some minor modification may be needed as discussed previously.

Each chapter concludes with a useful summary that includes (among other
things) a list of the key terms, new True BASIC statements, and style pointers
introduced in that chapter. The key terms are boldfaced within the text.

Programming Pointers, which discuss subtleties in the language and common
programming errors, appear throughout the text.

The last four chapters of the text are relatively short and, except in one case,
independent of one another (see the Dependency flowchart on the following
page). This makes it easy for an instructor to select extra topics to fill out a
course once the core material has been covered.

The text contains a chapter on graphics and sound. These topics are not only
important in their own right, but also arouse the interest of almost all students.

Preface xv

Chapter 1

The Basics of
True BASIC

1
Chapter 2

Input and
Output

|
Chapter 3

Structured
Programming

Chapter 4
Loops
1
Chapter 5
Decisions
1
Chapter 6
(Section 6.1)
Arrays
| I | |
Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10
(6.2-6.6) .
True BASIC Sequential Graphics and Programming
Arrays Functions Files Sound a Graphical
User Interface
(version
5.0-5.2)

13. The text includes several appendices (chapter appendices and text appen-
dices). Chapter appendices discuss relevant aspects of Windows 95/98 and
DOS and the command environments inherent in the different versions of
True BASIC, coding programs to output results directly to the printer, an
introduction to library usage, and utilizing MAT statements with arrays, addi-
tional numeric functions and programming dialog boxes. Text appendices
include using the Internet, the entire 256-character IBM-extended ASCII code
schematic and answers to selected practice exercises.

SUPPLEMENTARY MATERIALS

An Instructor’s Manual containing teaching suggestions, additional exercises (with
answers), answers to the even-numbered Chapter Review exercises, and solutions to
selected Programming Problems is available to those who adopt the text.

xvi

Preface

ACKNOWLEDGMENTS

We would like to thank the many people who helped bring this project to fruition. The
following reviewers greatly improved this text through their thoughtful comments and

useful suggestions:

William Beaver
Curtis Bring

John Castek

W. O. Crain

Louise Darcey
James Ingraham
Nancy Harrington
Robert Harrington
Taylor Hollist
Dana Johnson
Firooz Khosraviyani
Harold Kollmeier
Norman Lindquist
Marilyn Meyer
George Miller
Lewis Miller

Chris Nikolopoulos
J. Douglas Robertson
Pasha Rostov

R. Waldo Roth
Ingrid Russell

Jean Simutis
Alfred Weaver
Jack Weir

Michael Willis

City College of San Francisco

Moorhead State University

University of Wisconsin at La Crosse
Seattle Central Community College
Texas A & M University

Phoenix College

Johnson County Community College
Utah Valley Community College (retired)
State University of New York at Oneonta
North Dakota State University
University of Texas-Permian Basin
Glassboro State University

Western Washington University

Fresno City College

North Seattle Community College
Canada College

Bradley University

Bentley College

California Polytechnic State University, San Luis Obispo
Taylor University

University of Hartford

California State University at Hayward
University of Virginia

Rock Valley Community College
Montgomery College

We are indebted to Richard Mixter who suggested and helped shape this project,
and to Jennifer Maughan and Kelsey McGee who skillfully guided it through production.

I would like to thank my wife, Corinne, and my daughter, Tamara, for their con-
tinued encouragement and support.

S.V.

I would like to thank Stewart for his flexibility with this project and for his sup-
port. For their continued support and encouragement, I would also like to thank the
members of my department and the people who have made my life very special.

S.S.

INTRODUCTION IS

Sixty years ago, electronic computers did not exist. Just 30 years ago, there were fewer
than 25,000 of them. Today, millions of computers are in use around the world.

In their early days, computers were used almost exclusively by large businesses,
engineering firms, universities, and government institutions. At that time, they were
expensive, somewhat temperamental machines, kept isolated in their own air condi-
tioned rooms, and operated by specially trained personnel.

Today, computers are everywhere. You can find them in homes, schools, and
offices; in supermarkets and fast food restaurants; and on airliners and the space shuttle.
They are used by the young and the old, by filmmakers and farmers, and by bankers
and baseball managers. We use computers in almost limitless ways: for entertainment,
education, money management, product design and manufacture, and to run our busi-
nesses and institutions. There are now few human endeavors that are not somehow
touched by the use of the electronic computer.

In this introduction, we will discuss various aspects of the computer and how it is
used. Although you can certainly learn to program in True BASIC without this back-
ground information, it may help to clarify certain points and should increase your com-
puter literacy.

COMPUTERS

Everyone who uses a computer on a daily basis becomes accustomed to dealing with
special computer-related terminology. Yet to a beginner, many terms can be confusing
and even intimidating—for example, microdisks and hard disks, kilobytes and
megabytes, mice and monitors, and much more. In this section we will try to take some
of the mystery out of computer terminology.

What Is a Computer?

As with any evolving technology, precisely defining the term computer is not easy.
Computers can have many forms and their capabilities are constantly expanding. Yet,
all computers do the same basic things. Every computer can input, store, manipulate,
and output vast quantities of data at very high speeds. Moreover, all computers are
programmable—that is, they can follow a list of instructions (a program) and act
upon intermediate results without human intervention.

A personal computer (PC)—also called a microcomputer—is a relatively small
type of computer, usually intended for use by one person at a time. (Larger computers—
known as minicomputers, mainframes, and supercomputers, in order of increasing
size and power—can be simultaneously shared by many users, who are electronically

I-1

I-2 Introduction

connected to the larger computer by cables or telephone lines.) All personal computers
are small enough to fit on a desktop. Portable PCs (Laptops) are even smaller, usually
no larger than a loose-leaf binder. A typical PC is shown in Figure 1.

The Components of a Computer

As its definition implies, a computer must have the ability to input, store, manipulate,
and output data. These functions are carried out by the following five main components
of a computer system.

1. Central Processing Unit (CPU)
2. Internal Memory

3. Secondary Storage Devices

4. Input Devices

5. Output Devices

In a personal computer, the first two components (and usually the third) are
housed in the system cabinet (see Figure 1). Input devices like the keyboard and mouse
and output devices like the monitor are housed in their own enclosures and are con-
nected to the system unit by cables. Figure 2 illustrates the relationship among these
components; the arrows show the direction of data and information flow.

All of the physical components that make up the computer system are known as
hardware. Devices that are used by a computer but located outside the system unit are
sometimes called peripherals. The term software refers to the programs used by a
computer system.

FIGURE 1 A Typical Microcomputer System

Monitor

Floppy disk drive System unit

Keyboard

I { T iuumunﬁ, e

& 2y

Mouse

Introduction -3

FIGURE 2 The Components of a Computer System

Central Processing Unit
Arithmetic-
Logic
Unit
A
A
Input Control Output
Devices Unit Devices
A
Y
Primary < Secondary
Storage Storage
Unit > Devices

THE CENTRAL PROCESSING UNIT

The central processing unit (or CPU), also called the microprocessor, is the brain of
the computer. It consists of two major components:

1. A control unit that processes the instructions and directs the flow of informa-
tion throughout the computer system.

2. An arithmetic-logic unit that performs the necessary arithmetic (addition,
subtraction, and so on) and logical operations (like comparing two numbers).

THE INTERNAL STORAGE UNIT

The internal storage unit stores the information to be processed by the CPU. This infor-
mation consists of the program being executed, as well as the data—numbers, words, and
other symbols—manipulated by it. The internal storage unit is known by several other
names: internal memory, main memory, and RAM (for Random-Access Memory).

In modern computers, the internal memory consists of a set of microchips con-
nected by very fine wires. The CPU interacts with its internal storage unit at a very
high rate of speed; it takes only a fraction of a millionth of a second for it to access
memory. Unfortunately, any information stored there is lost when the computer’s power
is turned off.

I-4

Introduction

Internal memory is partitioned into storage locations called memory cells. Each
memory cell is capable of storing one character (letter, digit, comma, asterisk, and so
on), also known as one byte of information. On most computers, one byte is made up of
a combination of eight zeros and ones, each of which is called a bit (for binary digit).

One indication of the “power” of a computer is the number of storage locations
it contains, the size of its internal memory. This number is usually expressed in kilo-
bytes (KB) or megabytes (MB); one kilobyte is equal to 1,024 (=2'") bytes and one
megabyte is 1,024 kilobytes. For example, one megabyte of RAM contains 1,048,576 stor-
age locations (1 MB = 1,024 KB = 1,024 X 1,024 bytes) in its internal memory.

NOTE We sometimes speak of the CPU and internal memory as being the
computer. The secondary storage and input/output devices are referred to as
peripherals. All these components taken together make up a computer system.

EXTERNAL STORAGE DEVICES

In addition to internal memory, a computer needs external storage, another form of
memory, which stores programs and data semipermanently. Unlike the contents of
RAM, which are lost when the computer is turned off, information remains in external
storage until you decide to erase it. However, to make use of any data or software stored
on an external storage device, you must first load (or copy) the information into RAM.

The primary type of external storage device on a PC is the disk drive. Most PCs
contain a hard disk drive housed within the system unit, and at least one external
(microdisk), also housed within the system unit but accessible from the outside (refer to
Figure 1). The hard disk is a magnetic platter that is sealed within the drive. Microdisks
(or diskettes), on the other hand, are stored away from the computer and are inserted into
a drive when needed. Hard disks store massive amounts of data and information with
storage capacities ranging from 800 MB to 4.5 GB or more. Microdisks, however, are
portable disks 3 1/2 inches in diameter with a storage capacity of 1.44 MB.

Most PCs are also equipped with additional types of external storage devices such
as a CD-ROM drive and/or a Zip drive. CD-ROM drives use disks that are similar to
audio compact disks (hence the “CD” in the name). Like microdisks, these disks are
removable and portable, but unlike microdisks, they hold huge amounts of information
(about 600 MB). Because CD-ROM drives are Read-Only Memory (ROM) devices, you
cannot write (save) data on these disks. They are used primarily to store reference mater-
ial (such as an encyclopedia) and sophisticated computer games. Zip drives use disks call
Zip disks that are similar in size to microdisks. These disks are portable and have a stor-
age capacity of 100 MB. Zip disks are an excellent storage medium for transporting large
amounts of data and programs to and from other PCs that have access to a Zip drive.

INPUT DEVICES

An input device enables us to communicate with the computer. It accepts information
in a form that is understandable to people (such as typed or spoken words), transforms
it into a machine-readable form, and transmits it to the computer.

Introduction I-5

The typewriter-like keyboard is by far the most common input device in use
today. To enter information into the computer, you simply type it at the keyboard in
much the same way you would if you were using an ordinary typewriter. (The charac-
ters you type at the keyboard simultaneously appear on the computer’s display screen.)
Computer keyboards contain a few more keys than a typewriter; the extra ones facili-
tate communication with the machine.

Another type of input device is used to “point” at items on the display screen and
thus initiate an action. The most popular of these devices is the mouse, a handheld
object containing one, two, or three buttons that moves a pointer on the screen when
you roll the mouse around on the desk top. Pointing devices such as the mouse can
speed up some input operations, but they lack the versatility of a keyboard.

OUTPUT DEVICES

Whereas input devices allow us to communicate with the computer, output devices
make it possible for the computer to “talk” to us. The most common output devices are
monitors and printers.

The computer’s primary output device is the monitor, a high resolution television-
like screen enclosed in a case and controlled by circuitry—the video adapter card—
within the computer. The output from the monitor is called soft copy.

To make a permanent copy of the computer’s output (hard copy) on paper, we
use a printer. These come in several varieties including ink jet, bubble jet, and laser jet
printers with black and white and color capabilities. Among these, the laser jet printer is
the premier printer in use today. It combines the print quality of type-written text with
the speed of Superman.

PROGRAMMING LANGUAGES AND SOFTWARE

The computer’s hardware (its CPU, memory, and peripherals) is useless without
instructions that tell it what to do. The first computers were given these instructions (the
program) by actually rewiring some of their circuits. Needless to say, this was a
painstaking task. Then, in the late 1940s, the brilliant mathematician John von
Neumann came up with the idea of storing the instructions in the computer’s internal
memory, and this is the way it has been done ever since.

Types of Programming Languages

A programming language is a set of symbols and the rules governing their use,
employed in constructing programs. Programming languages are of four fundamental

types:
1. Machine languages
2. Assembly languages
3. High-level languages

4. Event-driven languages

Introduction

A machine language program consists of a sequence of zeros and ones. The
numbers specified and the order in which they appear tell the computer what to do.
Machine language, which differs considerably from one type of computer to another, is
the only language the machine can understand directly. However, as you might imag-
ine, it is very difficult for humans to read or write. For this reason, programmers write
their programs in either assembly or high-level languages.

Assembly language is a symbolic representation of machine language. There is
usually a one-to-one correspondence between the two; each assembly language instruc-
tion translates into one machine language instruction. However, assembly language
uses easily recognizable codes, which make it a lot easier for people to understand. For
example, the following instruction adds two numbers on a certain minicomputer:

Machine Language Instruction
0110110111110111 0000000000000010 0000000000000010

Assembly Language Equivalent
ADD A,B

Before a computer can carry out an assembly language program, it must be translated
(by the computer) into machine language. This is done by a special program called an
assembler.

High-level languages (procedural languages) usually contain English words
and phrases; their symbols and structure are far removed from those of machine lan-
guage. High-level languages have several advantages over machine or assembly lan-
guages. They are easier to learn and use, and the resultant programs are easier to read
and modify. A single instruction in a high-level language usually translates into many
instructions in machine language. Moreover, a given high-level language does not differ
much from computer to computer; a program written on one machine can usually be
modified relatively easily for use on another. On the negative side, programs written in
a high-level language are usually less efficient than their assembly language counter-
parts. High-level languages, like assembly languages, must be translated into machine
language before their instructions can be carried out. This is done by programs known
as interpreters and compilers.

The first high-level language, FORTRAN (which stands for FORmula TR ANsla-
tion), was developed in the mid-1950s for engineering and scientific applications. Since
then, there has been a flood of high-level languages. A few of these are:

Ada (named after the Countess of Lovelace)—mostly for military applications

BASIC (Beginner’s All-purpose Symbolic Instruction Code)—the language you will learn
in this text

C—for efficient programming of many different types of applications
COBOL (COmmon Business Oriented Language)—for business related programming

Pascal (named after Blaise Pascal, a 17th-century philosopher and mathematician)—for
teaching programming concepts and microcomputer applications

An event-driven language is a high-level language that allows the programmer,
among other things, to create a graphical user interface (GUI) by writing code to add
forms (windows/dialog boxes), command buttons, text boxes, etc. to a program. In this

Introduction I-7

way, the executing program’s environment appears similar to the Windows 3.1 or
Windows 95 software environments. True BASIC (versions 5.0-5.2) and Visual BASIC
are both examples of event-driven languages.

True BASIC

True BASIC is a particular version of the BASIC programming language. BASIC was cre-
ated by John Kemeny and Thomas Kurtz at Dartmouth College in the mid-1960s for the
specific purpose of providing students with a powerful yet easy-to-learn means of writing
programs. Since the advent of microcomputers, which are often sold with BASIC included
as part of the package, it has become the most popular programming language in use today.

As its popularity increased, so did the number of BASIC dialects, slightly differ-
ent versions of the language. The most popular version of BASIC in use today is pub-
lished by Microsoft Corporation and is available for most microcomputers in several
different versions; it may be called Microsoft BASIC, QBASIC, or Visual-BASIC.
True BASIC, also created by John Kemeny and Thomas Kurtz, is an implementation of
BASIC that closely conforms to national standards, and is very well suited for both
beginning and experienced programmers. True BASIC is simple enough to be easily
learned, yet powerful enough to be used in practical applications.

BASIC is usually translated into machine language by means of a built-in pro-
gram, either an interpreter or a compiler. An interpreter translates each instruction of
your program and then the translated instruction is executed by the computer. A com-
piler, on the other hand, translates the entire program before the computer executes any
of the instructions. Interpreters allow you to execute partial programs, thus enabling
you to see how your program is working before you complete it. However, interpreted
programs execute considerably more slowly than their compiled counterparts. Today the
current versions of BASIC,7 like True BASIC and Visual BASIC, use compilers to
translate the programs you write.

Computer Software

Programming languages are used to create software, the programs used by a computer
system. Software can be divided into two main categories:

1. Systems software
2. Applications software

Systems software, which is written by the computer manufacturer or specifically
for that manufacturer, coordinates the actions of the components of the computer system.
It includes compilers, interpreters, text editors, and the computer’s operating system
(Windows 95/98 on IBM-compatible microcomputers), the master control program for
the system. When you load a program into memory or use your printer, you do so with
the aid of the operating system. Generally speaking, systems software supplies the tools
that enable us to write and to run our applications programs.

Applications software refers to the programs that solve the computer user’s
problems. It includes, as just a few examples, word processors, spreadsheets, teaching
programs, and games. (Games solve the problem of what to do with your spare time.)
Applications software might be written by its user, but it is much more likely to be cre-
ated by a software publishing house.

I-8 Introduction

Writing Your Own Programs

In this text you will learn to write True BASIC programs: your own applications soft-
ware. Here are some suggestions to help the learning process.

1. Read the text carefully. The computer is a literal-minded machine; it requires
that you follow exactly the rules governing the use of True BASIC. For exam-
ple, a misspelled word may confuse the computer even though it’s perfectly
clear (to a human being) what you meant to say.

2. Take things one step at a time. After you’ve read a section, work its self-test;
after you’ve completed a chapter, read the summary and work the review
exercises. This will help reinforce the material you’ve just learned.

3. Practice, practice, practice. To learn programming, you must program. It is
important to practice new concepts by doing some of the programming prob-
lems at the end of each chapter.

4. Above all, be patient. Everyone makes mistakes in writing programs, so don’t
let your mistakes get you down.

If you follow these suggestions, you should find programming to be fun and a reward-
ing experience. Good luck!

SUMMARY

Key Terms*

computer
microcomputer
hardware

control unit

internal storage unit
internal memory
RAM

character

bit

computer system
diskette (microdisk)
hard disk

keyboard

output device

hard copy

soft copy
programming language
programmer
assembler

dialects (of BASIC)
compiler

systems software
application software
program

*Key terms are listed in order of introduction.

central processing unit (CPU)
arithmetic-logic unit (ALU)
data

main memory

memory cells

byte

peripherals

external storage

disk drive

CD-ROM disk

Zip disk

input device

mouse

monitor

printer

machine language
assembly language
high-level language
event-drive language
graphical user interface (GUI)
interpreter

software

operating system

personal computer

REVIEW
EXERCISES

Introduction

Components of a Computer

Central processing unit

Internal storage unit: internal memory (main memory or RAM)
External storage devices (disk drives, types of storage media)
Input devices (such as a keyboard or mouse)

Output devices (such as a monitor or printer)

Types of Programming Languages

Machine languages
Assembly languages
High-level languages
Event-driven languages

1. In your own words, what is a computer?

[

. According to your definition which of the following qualify as computers?
a. Simple calculators
b. Programmable calculators
¢. Microwave ovens
d. Digital watches

3. According to the definition given in the text, which of the items in exercise 2 are

computers?
4. Name the five major components of a computer system?

5. How many characters can be stored by a computer that has:
a. 64 KB of RAM
b. 2 MB of RAM

6. Why are both internal and secondary storage necessary in a computer system?
7. Name the four general categories of computer languages.

8. What is the difference between an interpreter and a compiler?

9. What is the difference between hardware and software?

10. What is the difference between application software and system software?

contentsinrer T

Introduction Computers 1-1

Chapter 1 The Basics of True BASIC 1
Chapter 2 Input and Output 67

Chapter 3 Structured Programming 109
Chapter 4 Loops 161

Chapter 5 Decisions 211

Chapter 6 Arrays 261

Chapter 7 True BASIC Functions 315
Chapter 8 Sequential Files 363

Chapter 9 Graphics and Sound 401
Chapter 10 Programming a Graphical User Interface 445

Appendix A Using the Internet A-3
Appendix B The ASCII Code A-9
Appendix C Answers to Selected Exercises A-11

