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Preface

Language theory, as originated from Chomsky’s seminal work in the fifties
last century and in parallel to Turing-inspired automata theory, was first
applied to natural language syntax within the context of the first unsuc-
cessful attempts to achieve reliable machine translation prototypes. After
this, the theory proved to be very valuable in the study of programming
languages and the theory of computing.

In the last 15-20 years, language and automata theory has experienced
quick theoretical developments as a consequence of the emergence of new
interdisciplinary domains and also as the result of demands for application
to a number of disciplines.

Language methods (i.e. formal language methods) have been applied to
a variety of fields, which can be roughly classified as:

e Computability and complexity,

e Natural language processing,

e Artificial intelligence, cognitive science, and programming,
e Bio-inspired computing and natural computing,

e Bioinformatics.

The connections of this broad interdisciplinary domain with other ar-
eas include: computational linguistics, knowledge engineering, theoretical
computer science, software science, molecular biology, etc.

This volume gives just a few examples of the sort of research involved
in this framework, with the intention to reflect the spirit of the whole book
series.

Carlos Martin-Vide
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Chapter 1

Descriptional Complexity — An
Introductory Survey

Markus Holzer and Martin Kutrib
Institut fir Informatik, Universitat Giessen,
Arndtstr. 2, 35392 Giessen, Germany,
E-mail: {holzer, kutridb}Q@informatik. uni-giessen. de

The purpose of the paper is to give an introductory survey of the main
aspects and results regarding the relative succinctness of different repre-
sentations of languages, such as finite automata, regular expressions, push-
down automata and variants thereof, context-free grammars, and descrip-
tional systems from a more abstract perspective. Basic properties of these
descriptional systems and their size measures are addressed. The trade-
offs between different representations are either bounded by some recursive
function, or reveal the phenomenon that the gain in economy of description
can be arbitrary. In the latter case there is no recursive function serving
as upper bound. We discuss developments relevant to the descriptional
complexity of formal systems. The results presented are not proved but
we merely draw attention to the big picture and some of the main ideas
involved.

1.1 Introduction

In the field of theoretical computer science the term descriptional complez-
1ty has a well known meaning as it stands. Since the beginning of computer
science descriptional complexity aspects of systems (automata, grammars,
rewriting systems, etc.) have been a subject of intensive research [111]—
since more than a decade the Workshop on “Descriptional Complexity of
Formal Systems” (DCFS), formerly known as the Workshop on “Descrip-
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tional Complexity of Automata, Grammar, and Related Structures,” has
contributed substantially to the development of this field of research. The
broad field of descriptional complexity of formal systems includes, but is
not limited to, various measures of complexity of automata, grammars, lan-
guages and of related descriptional systems, succinctness of descriptional
systems, trade-offs between complexity and mode of operation, etc., to
mention a few.

The time has come to give an introductory survey of the main aspects
and results regarding the relative succinctness of different representations
of languages by finite automata, pushdown automata and variants thereof,
context-free grammars, and descriptional systems from a more abstract per-
spective. Our tour mostly focuses on results that were found at the advent
of descriptional complexity, for example, [52, 53, 59, 60, 98, 109, 112]. To
this end, we have to unify the treatment of different research directions from
the past. See also [38] for a recent survey of some of these results. Our
write up obviously lacks completeness and it reflects our personal view of
what constitute the most interesting relations of the aforementioned devices
from a descriptional complexity point of view. In truth there is much more
to the subject in question, than one can summarize here. For instance,
the following current active research directions were not addressed in this
summary: we skipped almost all results from the descriptional complex-
ity of the operation problem which was revitalized in [137] after the dawn
in the late 1970’s. Moreover we will discuss anything on the subject of
magic numbers a research field initiated in [73], and on the related inves-
tigations of determinization of nondeterministic finite automata accepting
subregular languages done in [14] and others, and finally we left out the
interesting field of research on the transition complexity of nondetermin-
istic finite automata which has received a lot of attention during the last
years [26, 46, 69, 70, 97].

In the next section, basic notions are given, and the basic properties
of descriptional systems and their complexity measures are discussed and
presented in a unified manner. A natural and important measure of de-
scriptional complexity is the size of a representation of a language, that
is, the length of its description. Section 1.3 is devoted to several aspects
and results with respect to complexity measures that are recursively re-
lated to the sizes. A comprehensive overview of results is given concerning
the question: how succinctly can a regular or a context-free language be
represented by a descriptor of one descriptional system compared with the
representation by an equivalent descriptor of the other descriptional sys-
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tem? Section 1.4 generalizes this point of view. Roughly speaking some,
say, structural resource is fixed and its descriptional power is studied by
measuring other resources. So, the complexity measures are not necessar-
ily recursively related to the sizes of the descriptors. Here we stick with
context-free grammars and subclasses as descriptional systems. Finally,
Section 1.5 deals with the phenomenon of non-recursive trade-offs, that is,
the trade-offs between representations of languages in different descriptional
systems are not bounded by any recursive function. With other words, the
gain in economy of description can be arbitrary. It turned out that most
of the proofs appearing in the literature are basically relying on one of two
fundamental schemes. These proof schemes are presented in a unified man-
ner. Some important results are collected in a compilation of non-recursive
trade-offs.

1.2 Descriptional Systems and Complexity Measures

We denote the set of nonnegative integers by N, and the powerset of a
set S by 2°. In connection with formal languages, strings are called words.
Let ¥* denote the set of all words over a finite alphabet ¥. The empty
word is denoted by A, and we set ¥ = £* — {\}. For the reversal of a
word w we write w? and for its length we write |w|. A formal language L
is a subset of ¥*. In order to avoid technical overloading in writing, two
languages L and L’ are considered to be equal, if they differ at most by
the empty word, that is, L — {A\} = L’ — {\}. Throughout the article two
automata or grammars are said to be equivalent if and only if they accept
or generate the same language. We use C for inclusions and C for strict
inclusions.

We first establish some notation for descriptional complexity. In or-
der to be general, we formalize the intuitive notion of a representation or
description of a family of languages. A descriptional system is a collec-
tion of encodings of items where each item represents or describes a formal
language. In the following, we call the items descriptors, and identify the
encodings of some language representation with the representation itself.
A formal definition is:

Definition 1.1. A descriptional system S is a set of finite descriptors,
such that each descriptor D € S describes a formal language L(D), and
the underlying alphabet alph(D) over which D represents a language can
be read off from D. The family of languages represented (or described)
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by S is Z(S) = {L(D) | D € 8}. For every language L, the set
S(L)={D € 8| L(D) = L} is the set of its descriptors in S.

Example 1.2. Pushdown automata (PDA) can be encoded over some fixed
alphabet such that their input alphabets can be extracted from the encod-
ings. The set of these encodings is a descriptional system S, and .Z(S) is
the family of context-free languages (CFL). O

Now we turn to measure the descriptors. Basically, we are interested
in defining a complexity measure as general as possible to cover a wide
range of approaches, and in defining it as precise as necessary to allow a
unified framework for proofs. So, we consider a complexity measure for
a descriptional system S to be a total, recursive mapping ¢ : S — N. The
properties total and recursive are straightforward.

Example 1.3. The family of context-free grammars is a descriptional sys-
tem. Examples for complexity measures are the number productions ap-
pearing in a grammar, or the number of nonterminals, or the total number
of symbols, that is, the length of the encoding. O

Common notions as the relative succinctness of descriptional systems
and our intuitive understanding of descriptional complexity suggest to con-
sider the size of descriptors. From the viewpoint that a descriptional sys-
tem is a collection of encoding strings, the length of the strings is a natural
measure for the size. We denote it by length. In fact, we will use it to
obtain a rough classification of different complexity measures. We distin-
guish between measures that (with respect to the underlying alphabets) are
recursively related with length and measures that are not.

Definition 1.4. Let S be a descriptional system with complexity mea-
sure c¢. If there is a total, recursive function g : N x N — N such that
length(D) < g(e(D),|alph(D)|), for all D € S, then c is said to be an
s-measure.

Example 1.5. Let us consider a widely accepted measure of complexity
for finite automata, that is, their number of states, which is denoted by
state. The formal definition of a finite automaton is given in the next
section. Is state an s-measure? What makes a difference between the
number of states (say, for deterministic finite automata (DFA)) and the
lengths of encoding strings? The answer is obvious, encoding strings are
over some fixed alphabet whereas the input alphabet of DFAs is not fixed



Descriptional Complexity — An Introductory Survey 5

a priori. The number of transitions depends on the input alphabet while
the number of states does not. But states and transitions both determine
the lengths of encoding strings. Nevertheless, when finite automata are
addressed then, actually, a fixed given input alphabet is assumed tacitly.
Since we regarded this aspect in the definition of s-measures, the answer
to the first question is yes, the number of states of finite automata is an
s-measure. To this end, given a deterministic finite automaton A, we may
choose g(state(A),alph(A)) = k-state(A)-alph(A), where state(A)-alph(A)
is the number of transition rules, and k is a mapping that gives the length
of a rule dependent on the actual encoding alphabet, the number of states
and the number of input symbols.

Similarly, we can argue for other types of finite automata as nondeter-
ministic or alternating ones either with one-way or two-way head motion,
etc. If the number of transition rules depends on the number of states and
the number of input symbols (and, of course, on the type of the automaton
in question), and the length of the rules is bounded dependent on the type
of the automaton, then state is an s-measure. O

Whenever we consider the relative succinctness of two descriptional sys-
tems S; and Sz, we assume the intersection Z(S;)N.Z(S2) to be non-empty.

Definition 1.6. Let S; be a descriptional system with complexity mea-
sure c¢1, and S be a descriptional system with complexity measure cp. A
total function f : N — N, is said to be an upper bound for the increase
in complexity when changing from a descriptor in &; to an equivalent
descriptor in Sy, if for all D; € & with L(D;) € £(8S2) there exists a
D; € S5(L(Dy)) such that ca(D2) < f(c1(Dy)).

If there is no recursive function serving as upper bound, the trade-off
is said to be non-recursive. That is, whenever the trade-off from one de-
scriptional system to another is non-recursive, one can choose an arbitrarily
large recursive function f but the gain in economy of description eventually
exceeds f when changing from the former system to the latter.

Definition 1.7. Let S; be a descriptional system with complexity mea-
sure c1, and Sz be a descriptional system with complexity measure cp. A
total function f : N — N, is said to be a lower bound for the increase in
complexity when changing from a descriptor in §; to an equivalent descrip-
tor in Sy, if for infinitely many Dy € §; with L(D;) € .Z(Ss) there exists
a minimal Dy € So(L(D;)) such that ca(D2) > f(e1(Dy)).



6 M. Holzer and M. Kutrib

1.3 Measuring Sizes

This section is devoted to several aspects of measuring descriptors with
s-measures. A main field of investigation deals with the question: how
succinetly can a language be represented by a descriptor of one descriptional
system compared with the representation by an equivalent descriptor of
the other descriptional system? An upper bound for the trade-off gives
the maximal gain in economy of description, and conversely, the maximal
blow-up (in terms of descriptional complexity) for simulations between the
descriptional systems. A maximal lower bound for the trade-off terms the
costs which are necessary in the worst cases.

1.3.1 Descriptional Systems for Regular Languages

Regular languages are represented by a large number of descriptional sys-
tems. So, it is natural to investigate the succinctness of their representations
with respect to s-measures in order to optimize the space requirements. In
this connection, many results have been obtained. On the other hand, the
descriptional complexity of regular languages still offers challenging open
problems. In the remainder of this subsection we collect and discuss some
of these results and open problems.

1.3.1.1 Finite Automata

Here we measure the costs of representations by several types of finite au-
tomata in terms of the number of states, which is an s-measure by Exam-
ple 1.5. Probably the most famous result of this nature is the simulation
of nondeterministic finite automata by DFAs. Since several results come
up with tight bounds in the exact number of states, it is advantageous to
recall briefly the definitions of finite automata on which the results rely.

Definition 1.8. A nondeterministic finite automaton (NFA) is a quintuple
A= (Q,X,9,q,F), where Q is the finite set of states, ¥ is the finite set
of input symbols, qo € Q is the initial state, F C Q is the set of accepting
states, and & : Q x ¥ — 29 is the transition function.

A finite automaton is deterministic (DFA) if and only if |6(q, a)| = 1, for
all states ¢ € @ and letters a € ¥. In this case we simply write §(q,a) = p
instead of 6(g,a) = {p} assuming that the transition function is a mapping
0:Q % B —Q.



